Background: Wrist-worn inertial sensors are used in digital health for evaluating mobility in real-world environments. Preceding the estimation of spatiotemporal gait parameters within long-term recordings, gait detection is an important step to identify regions of interest where gait occurs, which requires robust algorithms due to the complexity of arm movements. While algorithms exist for other sensor positions, a comparative validation of algorithms applied to the wrist position on real-world data sets across different disease populations is missing.
View Article and Find Full Text PDFBackground: Although digital mobility outcomes (DMOs) can be readily calculated from real-world data collected with wearable devices and ad-hoc algorithms, technical validation is still required. The aim of this paper is to comparatively assess and validate DMOs estimated using real-world gait data from six different cohorts, focusing on gait sequence detection, foot initial contact detection (ICD), cadence (CAD) and stride length (SL) estimates.
Methods: Twenty healthy older adults, 20 people with Parkinson's disease, 20 with multiple sclerosis, 19 with proximal femoral fracture, 17 with chronic obstructive pulmonary disease and 12 with congestive heart failure were monitored for 2.
Wearable devices are used in movement analysis and physical activity research to extract clinically relevant information about an individual's mobility. Still, heterogeneity in protocols, sensor characteristics, data formats, and gold standards represent a barrier for data sharing, reproducibility, and external validation. In this study, we aim at providing an example of how movement data (from the real-world and the laboratory) recorded from different wearables and gold standard technologies can be organized, integrated, and stored.
View Article and Find Full Text PDFIntroduction: Existing mobility endpoints based on functional performance, physical assessments and patient self-reporting are often affected by lack of sensitivity, limiting their utility in clinical practice. Wearable devices including inertial measurement units (IMUs) can overcome these limitations by quantifying digital mobility outcomes (DMOs) both during supervised structured assessments and in real-world conditions. The validity of IMU-based methods in the real-world, however, is still limited in patient populations.
View Article and Find Full Text PDFPurpose: Short and long sleep durations have adverse effects on physical and mental health. However, most studies are based on self-reported sleep duration and health status. Therefore, this longitudinal study aims to investigate objectively measured sleep duration and subsequent primary health care records in older adults to investigate the impact of sleep duration and fragmentation on physical and mental health.
View Article and Find Full Text PDFStudy Objectives: Normal timing and duration of sleep is vital for all physical and mental health. However, many sleep-related studies depend on self-reported sleep measurements, which have limitations. This study aims to investigate the association of physical activity and sociodemographic characteristics including age, gender, coffee intake and social status with objective sleep measurements.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
January 2013
This paper describes the e-Science Central (e-SC) cloud data processing system and its application to a number of e-Science projects. e-SC provides both software as a service (SaaS) and platform as a service for scientific data management, analysis and collaboration. It is a portable system and can be deployed on both private (e.
View Article and Find Full Text PDFThe AMUC (Associated Motion capture User Categories) project consisted of building a prototype sketch retrieval client for exploring motion capture archives. High-dimensional datasets reflect the dynamic process of motion capture and comprise high-rate sampled data of a performer's joint angles; in response to multiple query criteria, these data can potentially yield different kinds of information. The AMUC prototype harnesses graphic input via an electronic tablet as a query mechanism, time and position signals obtained from the sketch being mapped to the properties of data streams stored in the motion capture repository.
View Article and Find Full Text PDFThis paper describes the application of Artificial Intelligence and Multivariate Statistical Techniques to two industrial fermentation systems. In the first example, an Expert System is shown to provide tighter control of an important process parameter. This is shown to lead to improved consistency of operation.
View Article and Find Full Text PDF