The interest in processing human speech and other human-generated audio signals as a diagnostic tool has increased due to the COVID-19 pandemic. The project OSCAR (vOice Screening of CoronA viRus) aimed to develop an algorithm to screen for COVID-19 using a dataset of Portuguese participants with voice recordings and clinical data. This cross-sectional study aimed to characterise the pattern of sounds produced by the vocal apparatus in patients with SARS-CoV-2 infection documented by a positive RT-PCR test, and to develop and validate a screening algorithm.
View Article and Find Full Text PDFThe development of flexible electronics has increased the demand for wearable pressure sensors that can be used to monitor various biomedical signals. In this context, pressure sensors based on zinc oxide (ZnO) have great potential since, besides the biocompatibility and biodegradability of this metal oxide, it also has piezoelectric properties. The common feature of these sensors is the alignment of the ZnO nanostructures in the strain direction.
View Article and Find Full Text PDFThe Special Issue has received a total of 30 submissions so far, and from these, this new edition will publish 10 academic articles [...
View Article and Find Full Text PDFChronic spinal pain (CSP) is a prevalent condition, and prolonged sitting at work can contribute to it. Ergonomic factors like this can cause changes in motor variability. Variability analysis is a useful method to measure changes in motor performance over time.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
November 2024
In this article we propose a conceptual framework to study ensembles of conformal predictors (CP), that we call Ensemble Predictors (EP). Our approach is inspired by the application of imprecise probabilities in information fusion. Based on the proposed framework, we study, for the first time in the literature, the theoretical properties of CP ensembles in a general setting, by focusing on simple and commonly used possibilistic combination rules.
View Article and Find Full Text PDFCardiac surgery patients are highly prone to severe complications post-discharge. Close follow-up through remote patient monitoring can help detect adverse outcomes earlier or prevent them, closing the gap between hospital and home care. However, equipment is limited due to economic and human resource constraints.
View Article and Find Full Text PDFIn this paper, we study human-AI collaboration protocols, a design-oriented construct aimed at establishing and evaluating how humans and AI can collaborate in cognitive tasks. We applied this construct in two user studies involving 12 specialist radiologists (the knee MRI study) and 44 ECG readers of varying expertise (the ECG study), who evaluated 240 and 20 cases, respectively, in different collaboration configurations. We confirm the utility of AI support but find that XAI can be associated with a "white-box paradox", producing a null or detrimental effect.
View Article and Find Full Text PDFHuman activity recognition (HAR) and human behavior recognition (HBR) have been playing increasingly important roles in the digital age [...
View Article and Find Full Text PDFBiosignal-based technology has been increasingly available in our daily life, being a critical information source. Wearable biosensors have been widely applied in, among others, biometrics, sports, health care, rehabilitation assistance, and edutainment. Continuous data collection from biodevices provides a valuable volume of information, which needs to be curated and prepared before serving machine learning applications.
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
November 2023
Occupational Health Protection (OHP) is mandatory by law and can be accomplished by considering the participation of others besides occupational physicians. The data shared can originate knowledge that might influence other processes related to occupational risk prevention. In this study, we used Artificial Intelligence (AI) methods to extract patterns among records shared under these circumstances over two years in the automotive industry.
View Article and Find Full Text PDFHuman Activity Recognition (HAR) has been studied extensively, yet current approaches are not capable of generalizing across different domains (i.e., subjects, devices, or datasets) with acceptable performance.
View Article and Find Full Text PDFIn automotive and industrial settings, occupational physicians are responsible for monitoring workers' health protection profiles. Workers' Functional Work Ability (FWA) status is used to create Occupational Health Protection Profiles (OHPP). This is a novel longitudinal study in comparison with previous research that has predominantly relied on the causality and explainability of human-understandable models for industrial technical teams like ergonomists.
View Article and Find Full Text PDFCumulative fatigue during repetitive work is associated with occupational risk and productivity reduction. Usually, subjective measures or muscle activity are used for a cumulative evaluation; however, Industry 4.0 wearables allow overcoming the challenges observed in those methods.
View Article and Find Full Text PDFWearable sensors have increasingly been applied in healthcare to generate data and monitor patients unobtrusively. Their application for Brain-Computer Interfaces (BCI) allows for unobtrusively monitoring one's cognitive state over time. A particular state relevant in multiple domains is cognitive fatigue, which may impact performance and attention, among other capabilities.
View Article and Find Full Text PDFJob rotation is a work organization strategy with increasing popularity, given its benefits for workers and companies, especially those working with manufacturing. This study proposes a formulation to help the team leader in an assembly line of the automotive industry to achieve job rotation schedules based on three major criteria: improve diversity, ensure homogeneity, and thus reduce exposure level. The formulation relied on a genetic algorithm, that took into consideration the biomechanical risk factors (EAWS), workers' qualifications, and the organizational aspects of the assembly line.
View Article and Find Full Text PDFWith the fast increase in the demand for location-based services and the proliferation of smartphones, the topic of indoor localization is attracting great interest. In indoor environments, users' performed activities carry useful semantic information. These activities can then be used by indoor localization systems to confirm users' current relative locations in a building.
View Article and Find Full Text PDFObjectives: To investigate the use of a set of dynamical features, extracted from surface electromyography, to study upper motor neuron (UMN) degeneration in amyotrophic lateral sclerosis (ALS).
Methods: We acquired surface EMG signals from the upper limb muscles of 13 ALS patients and 20 control subjects and classified them according to a novel set of muscle activity features, describing the temporal and frequency dynamic behavior of the signals, as well as measures of its complexity. Using a battery of classification approaches, we searched for the most discriminating combination of those features, as well as a suitable strategy to identify ALS.
Treatment and prevention of cardiovascular diseases often rely on Electrocardiogram (ECG) interpretation. Dependent on the physician's variability, ECG interpretation is subjective and prone to errors. Machine learning models are often developed and used to support doctors; however, their lack of interpretability stands as one of the main drawbacks of their widespread operation.
View Article and Find Full Text PDFPointer-tracking methods can capture a real-time trace at high spatio-temporal resolution of users' pointer interactions with a graphical user interface. This trace is potentially valuable for research on human-computer interaction (HCI) and for investigating perceptual, cognitive and affective processes during HCI. However, little research has reported spatio-temporal pointer features for the purpose of tracking pointer movements in on-line surveys.
View Article and Find Full Text PDFInfrastructure-free Indoor Positioning Systems (IPS) are becoming popular due to their scalability and a wide range of applications. Such systems often rely on deployed Wi-Fi networks. However, their usability may be compromised, either due to scanning restrictions from recent Android versions or the proliferation of 5G technology.
View Article and Find Full Text PDFResearch in the use of ubiquitous technologies, tracking systems and wearables within mental health domains is on the rise. In recent years, affective technologies have gained traction and garnered the interest of interdisciplinary fields as the research on such technologies matured. However, while the role of movement and bodily experience to affective experience is well-established, how to best address movement and engagement beyond measuring cues and signals in technology-driven interactions has been unclear.
View Article and Find Full Text PDFThe field of biometrics is a pattern recognition problem, where the individual traits are coded, registered, and compared with other database records. Due to the difficulties in reproducing Electrocardiograms (ECG), their usage has been emerging in the biometric field for more secure applications. Inspired by the high performance shown by Deep Neural Networks (DNN) and to mitigate the intra-variability challenges displayed by the ECG of each individual, this work proposes two architectures to improve current results in both identification (finding the registered person from a sample) and authentication (prove that the person is whom it claims) processes: Temporal Convolutional Neural Network (TCNN) and Recurrent Neural Network (RNN).
View Article and Find Full Text PDFArtificial olfaction is a fast-growing field aiming to mimic natural olfactory systems. Olfactory systems rely on a first step of molecular recognition in which volatile organic compounds (VOCs) bind to an array of specialized olfactory proteins. This results in electrical signals transduced to the brain where pattern recognition is performed.
View Article and Find Full Text PDFBackground: Remote ischemic conditioning (RIC) is a procedure applied in a limb for triggering endogenous protective pathways in distant organs, namely brain or heart. The underlying mechanisms of RIC are still not fully understood, and it is hypothesized they are mediated either by humoral factors, immune cells and/or the autonomic nervous system. Herein, heart rate variability (HRV) was used to evaluate the electrophysiological processes occurring in the heart during RIC and, in turn to assess the role of autonomic nervous system.
View Article and Find Full Text PDFThe materials described in this work result from the self-assembly of liquid crystals and ionic liquids into droplets, stabilized within a biopolymeric matrix. These systems are extremely versatile gels, in terms of composition, and offer potential for fine tuning of both structure and function, as each individual component can be varied. Here, the characterization and application of these gels as sensing thin films in gas sensor devices is presented.
View Article and Find Full Text PDF