Tumor-associated macrophages (TAM) constitute a prominent immune cell population within various solid cancers, playing a pivotal role in disease progression. Their increased numbers and frequencies often strongly correlate with resistance to therapy and reduced overall survival rates. Within the complex ecosystem of the tumor microenvironment (TME), activated cancer-associated fibroblasts (CAF) are expanded and contribute significantly to tumor growth and metastasis and chemotherapy or immunotherapy resistance.
View Article and Find Full Text PDFAlthough heterogeneity of FAP+ Cancer-Associated Fibroblasts (CAF) has been described in breast cancer, their plasticity and spatial distribution remain poorly understood. Here, we analyze trajectory inference, deconvolute spatial transcriptomics at single-cell level and perform functional assays to generate a high-resolution integrated map of breast cancer (BC), with a focus on inflammatory and myofibroblastic (iCAF/myCAF) FAP+ CAF clusters. We identify 10 spatially-organized FAP+ CAF-related cellular niches, called EcoCellTypes, which are differentially localized within tumors.
View Article and Find Full Text PDFAlthough cancer-associated fibroblast (CAF) heterogeneity is well-established, the impact of chemotherapy on CAF populations remains poorly understood. Here we address this question in high-grade serous ovarian cancer (HGSOC), in which we previously identified 4 CAF populations. While the global content in stroma increases in HGSOC after chemotherapy, the proportion of FAP CAF (also called CAF-S1) decreases.
View Article and Find Full Text PDFChronic kidney disease (CKD) is a public health problem driven by myofibroblast accumulation, leading to interstitial fibrosis. Heterogeneity is a recently recognized characteristic in kidney fibroblasts in CKD, but the role of different populations is still unclear. Here, we characterize a proinflammatory fibroblast population (named CXCL-iFibro), which corresponds to an early state of myofibroblast differentiation in CKD.
View Article and Find Full Text PDF