Publications by authors named "Hugo Christenson"

The nucleation of ice crystals in clouds is poorly understood, despite being of critical importance for our planet's climate. Nucleation occurs largely at rare "active sites" present on airborne particles such as mineral dust, but the nucleation pathway is distinct under different meteorological conditions. These give rise to two key nucleation pathways where a particle is either immersed in a supercooled liquid water droplet (immersion freezing mode) or suspended in a supersaturated vapor (deposition mode).

View Article and Find Full Text PDF

Understanding how surfaces direct nucleation is a complex problem that limits our ability to predict and control crystal formation. We here address this challenge using high-speed imaging to identify and quantify the sites at which ice nucleates in water droplets on the two natural cleavage faces of macroscopic feldspar substrates. Our data show that ice nucleation only occurs at a few locations, all of which are associated with micron-size surface pits.

View Article and Find Full Text PDF

The topic of calcite and aragonite polymorphism attracts enormous interest from fields including biomineralization and paleogeochemistry. While aragonite is only slightly less thermodynamically stable than calcite under ambient conditions, it typically only forms as a minor product in additive-free solutions at room temperature. However, aragonite is an abundant biomineral, and certain organisms can selectively generate calcite and aragonite.

View Article and Find Full Text PDF

Nucleation of ice from vapor on atmospheric aerosols has been attributed to the condensation and freezing of supercooled water in small pores. Here we use wedge pores on mica to directly observe the growth of ice in confinement prior to the growth of bulk crystals. We report a transition in behavior with a decreasing temperature: At low temperatures, the limiting step is not nucleation but a free energy barrier associated with the growth of ice through a narrow pore mouth to become a bulk phase.

View Article and Find Full Text PDF

Precise measurement of contact angles is an important challenge in surface science, in the design and characterization of materials and in many crystallization experiments. Here we present a novel technique for measuring the contact angles of droplets between about 2° and 30°, with the lowest experimental uncertainty at the lower end of this range, typically ±0.1°.

View Article and Find Full Text PDF

Our understanding of crystal nucleation is a limiting factor in many fields, not least in the atmospheric sciences. It was recently found that feldspar, a component of airborne desert dust, plays a dominant role in triggering ice formation in clouds, but the origin of this effect was unclear. By investigating the structure/property relationships of a wide range of feldspars, we demonstrate that alkali feldspars with certain microtextures, related to phase separation into Na and K-rich regions, show exceptional ice-nucleating abilities in supercooled water.

View Article and Find Full Text PDF

As crystallization processes are often rapid, it can be difficult to monitor their growth mechanisms. In this study, we made use of the fact that crystallization proceeds more slowly in small volumes than in bulk solution to investigate the effects of the soluble additives Mg and poly(styrene sulfonate) (PSS) on the early stages of growth of calcite crystals. Using a "Crystal Hotel" microfluidic device to provide well-defined, nanoliter volumes, we observed that calcite crystals form via an amorphous precursor phase.

View Article and Find Full Text PDF

The thermal influence of a solid wall on the solidification of a sessile supercooled water drop is experimentally investigated. The velocity of the initial ice layer propagating along the solid substrate prior to dendritic solidification is determined from videos captured using a high-speed video system. Experiments are performed for varying substrate materials and liquid supercooling.

View Article and Find Full Text PDF

Heterogeneous nucleation is vital to a wide range of areas as diverse as ice nucleation on atmospheric aerosols and the fabrication of high-performance thin films. There is excellent evidence that surface topography is a key factor in directing crystallization in real systems; however, the mechanisms by which nanoscale pits and pores promote nucleation remain unclear. Here, we use natural cleavage defects on Muscovite mica to investigate the activity of topographical features in the nucleation from vapor of ice and various organic crystals.

View Article and Find Full Text PDF

Hollow metallic nanostructures have shown potential in various applications including catalysis, drug delivery and phototherapy, owing to their large surface areas, reduced net density, and unique optical properties. In this study, novel hollow gold nanoflowers (HAuNFs) consisting of an open hollow channel in the center and multiple branches/tips on the outer surface are fabricated for the first time, via a facile one-step synthesis using an auto-degradable nanofiber as a bifunctional template. The one-dimensional (1D) nanofiber acts as both a threading template as well as a promoter of the anisotropic growth of the gold crystal, the combination of which leads to the formation of HAuNFs with a hollow channel and nanospikes.

View Article and Find Full Text PDF

The mechanisms by which amorphous intermediates transform into crystalline materials are poorly understood. Currently, attracting enormous interest is the crystallization of amorphous calcium carbonate, a key intermediary in synthetic, biological and environmental systems. Here we attempt to unify many contrasting and apparently contradictory studies by investigating this process in detail.

View Article and Find Full Text PDF

Single-crystal calcite nanowires are formed by crystallization of morphologically equivalent amorphous calcium carbonate (ACC) particles within the pores of track etch membranes. The polyaspartic acid stabilized ACC is drawn into the membrane pores by capillary action, and the single-crystal nature of the nanowires is attributed to the limited contact of the intramembrane ACC particle with the bulk solution. The reaction environment then supports transformation to a single-crystal product.

View Article and Find Full Text PDF

This work investigates the early stages of precipitation of calcium sulfate from aqueous solution at room temperature and shows for the first time that amorphous calcium sulfate (ACS) and calcium sulfate hemihydrate are sequentially precipitated prior to calcium sulfate dihydrate (gypsum).

View Article and Find Full Text PDF

Background: Accurate mechanical characterization by the atomic force microscope at the highest spatial resolution requires that topography is deconvoluted from indentation. The measured height of nanoscale features in the atomic force microscope (AFM) is almost always smaller than the true value, which is often explained away as sample deformation, the formation of salt deposits and/or dehydration. We show that the real height of nano-objects cannot be obtained directly: a result arising as a consequence of the local probe-sample geometry.

View Article and Find Full Text PDF

In this work, we studied the heterogeneous nucleation and growth of CaCO(3) within regular arrays of picoliter droplets created on patterned self-assembled monolayers (SAMs). The SAMs provide well-defined substrates that offer control over CaCO(3) nucleation, and we used these impurity-free droplet arrays to study crystal growth in spatially and chemically controlled, finite-reservoir environments. The results demonstrate a number of remarkable features of precipitation within these confined volumes.

View Article and Find Full Text PDF

We have studied the capillary condensation of water from saturated vapor below 0 degrees C in the annular wedge-pore formed around two mica surfaces in contact in a surface force apparatus. The condensed water remains liquid down to at least -9 degrees C, and the measured condensate size is close to the predictions of a recent model for the dependence of the interfacial curvature of supercooled capillary condensates on temperature and surface tension. The small deviation observed may be accounted for by assuming that solute as K(2)CO(3) from the mica-condensate interface dissolves in the condensates and gives rise to an additional depression of the freezing point apart from that caused by the interface curvature.

View Article and Find Full Text PDF

Cyclohexane allowed to capillary condense from vapor in an annular wedge pore of mica in a surface force apparatus (SFA) remains liquid down to at least 14 K below the bulk melting-point T(m). This is an example of supercooling of a liquid due to confinement, like melting-point depression in porous media. In the wedge pore, however, the supercooled liquid is in equilibrium with vapor, and the amount of liquid (and thereby the radius of curvature r of the liquid-vapor interface) depends on the surface tension gamma(LV) of the liquid, not the interfacial tension between the solid and liquid.

View Article and Find Full Text PDF

We have determined the pKa of surface-bound primary amine groups by determining the surface potential as a function of solution pH from the magnitude of the electric double-layer force. Using colloid-probe atomic force microscopy (AFM), we measured the force as a function of separation between a particle of radius R = 10 microm and a planar surface, each coated with a self-assembled monolayer of HS(CH2)2CONH((CH2)2O)8(CH2)2NH2. The force was measured from pH 3 to 7, and the surface potential was determined by fitting the results to solutions of the nonlinear Poisson-Boltzmann equation.

View Article and Find Full Text PDF

Colloidal probe atomic force microscopy (AFM) was used to study the interaction between a surface bearing tethered cholesterol groups and an egg phosphatidylcholine (egg-PC) monolayer. The cholesterol bearing surface was comprised of a mixed self-assembled monolayer comprised of O-cholesteryl N-(8'-mecapto-3',6'-dioxaoctyl)carbamate (CPEO3) molecules and beta-mercaptoethanol formed on a 20 mum diameter gold-coated silica particle. The egg-PC monolayer was adsorbed onto an octadecylthiol monolayer formed on template-stripped gold.

View Article and Find Full Text PDF

Neutron reflectometry has been employed to examine the nature of the critical adsorption surface scaling function for a near-critical mixture of hexane-d14+perfluorohexane adsorbing to a solid substrate from the liquid one-phase region. The analysis method of Dietrich and Schack has been applied to examine the nature of the power-law part of the critical adsorption surface scaling function, which has been found to behave as m(z) approximately P0z(-mu) as the critical point is approached. Values of mu = 0.

View Article and Find Full Text PDF

Upper airway luminal patency is influenced by a number of factors including: intraluminal air pressure, upper airway dilator muscle activity, surrounding extraluminal tissue pressure and surface tension acting within the liquid layer lining the upper airway. In this study we examine the performance characteristics for the 'pull-off' force method for measuring the surface tension (gamma) of liquids. This method is then used to examine the gamma of the liquid lining the oro-pharynx in awake human subjects.

View Article and Find Full Text PDF

Using neutron reflectometry, adsorption from an equimolar mixture of hexane + perfluorohexane to a fluorophobic, octadecyl-coated, silicon substrate has been investigated as a function of temperature in the one-phase region upon approach to liquid-liquid coexistence. The composition of the investigated mixture, x(F) = 0.50, is well removed from the critical composition of x(F) = 0.

View Article and Find Full Text PDF

The obstructive sleep apnoea syndrome (OSA) is a disorder characterised by repetitive closure and re-opening of the upper airway during sleep. Upper airway luminal patency is influenced by a number of factors including: intraluminal air pressure, upper airway dilator muscle activity, surrounding extraluminal tissue pressure, and also surface forces which can potentially act within the liquid layer lining the upper airway. The aim of the present study was to examine the role of upper airway mucosal lining liquid (UAL) surface tension (gamma) in the control of upper airway patency.

View Article and Find Full Text PDF