Publications by authors named "Hugo B Nicolli"

Several million people around the world are currently exposed to excessive amounts of arsenic (As) and fluoride (F) in their drinking water. Although the individual toxic effects of As and F have been analyzed, there are few studies addressing their co-occurrences and water treatment options. Several studies conducted in arid and semi-arid regions of Latin America show that the co-occurrences of As and F in drinking water are linked to the volcaniclastic particles in the loess or alluvium, alkaline pH, and limited recharge.

View Article and Find Full Text PDF

The Chaco-Pampean plain, Argentina, is a vast geographical unit (1,000,000 km²) affected by high arsenic (As) concentrations in universal oxidizing groundwater. The socio-economic development of the region is restricted by water availability and its low quality caused by high salinity and hardness. In addition, high As and associated trace-elements (F, U, V, B, Se, Sb, Mo) concentrations of geogenic origin turn waters unsuitable for human consumption.

View Article and Find Full Text PDF

The Salí River Basin in north-west Argentina (7,000 km(2)) is composed of a sequence of Tertiary and Quaternary loess deposits, which have been substantially reworked by fluvial and aeolian processes. As with other areas of the Chaco-Pampean Plain, groundwater in the basin suffers a range of chemical quality problems, including arsenic (concentrations in the range of 12.2-1,660 μg L(-1)), fluoride (50-8,740 μg L(-1)), boron (34.

View Article and Find Full Text PDF

The global impact on public health of elevated arsenic (As) in water supplies is highlighted by an increasing number of countries worldwide reporting high As concentrations in drinking water. In Latin America, the problem of As contamination in water is known in 14 out of 20 countries: Argentina, Bolivia, Brazil, Chile, Colombia, Cuba, Ecuador, El Salvador, Guatemala, Honduras, Mexico, Nicaragua, Peru and Uruguay. Considering the 10 μg/L limit for As in drinking water established by international and several national agencies, the number of exposed people is estimated to be about 14 million.

View Article and Find Full Text PDF

In oxidizing aquifers, arsenic (As) mobilization from sediments into groundwater is controlled by pH-dependent As desorption from and dissolution of mineral phases. If climate is dry, then the process of evaporative concentration contributes further to the total concentration of dissolved As. In this paper the principal As mobility controls under these conditions have been demonstrated for Salí River alluvial basin in NW Argentina (Tucumán Province; 7000 km(2)), which is representative for other basins or areas of the predominantly semi-arid Chaco-Pampean plain (1,000,000 km(2)) which is one of the world's largest regions affected by high As concentrations in groundwater.

View Article and Find Full Text PDF