Publications by authors named "Hughes Goldie"

Background: Phosphoenolpyruvate carboxykinase (PEPCK) is a metabolic enzyme in the gluconeogenesis pathway, where it catalyzes the reversible conversion of oxaloacetate (OAA) to phosphoenolpyruvate (PEP) and CO. The substrates for Escherichia coli PEPCK are OAA and MgATP, with Mn acting as a cofactor. Analysis of PEPCK structures have revealed amino acid residues involved in substrate/cofactor coordination during catalysis.

View Article and Find Full Text PDF

Phosphoenolpyruvate carboxykinase (PCK) reversibly catalyzes the carboxylation of phosphoenolpyruvate to oxaloacetate. Carbon dioxide, and not bicarbonate ion, is the substrate utilized. Assays of the carboxylation reaction show that initial velocities are 7.

View Article and Find Full Text PDF

Phosphoenolpyruvate carboxykinase (PCK) catalyzes the conversion of oxaloacetate (OAA) to PEP and carbon dioxide with the subsequent conversion of nucleoside triphosphate to nucleoside diphosphate (NDP). The 1.9 A resolution structure of Escherichia coli PCK consisted of a 275-residue N-terminal domain and a 265-residue C-terminal domain with the active site located in a cleft between these domains.

View Article and Find Full Text PDF

The quaternary structure of ATP-dependent phosphoenolpyruvate (PEP) carboxykinases is variable. Thus, the carboxykinases from Escherichia coli, Trypanosoma brucei, and Saccharomyces cerevisiae are monomer, homodimer, and homotetramer, respectively. In this work, we studied the effect of temperature on the stability of the enzyme activity of these three carboxykinases, and have found that it follows the order monomer > dimer > tetramer.

View Article and Find Full Text PDF

The 1.8-A resolution structure of the ATP-Mg(2+)-Ca(2+)-pyruvate quinary complex of Escherichia coli phosphoenolpyruvate carboxykinase (PCK) is isomorphous to the published complex ATP-Mg(2+)-Mn(2+)-pyruvate-PCK, except for the Ca(2+) and Mn(2+) binding sites. Ca(2+) was formerly implicated as a possible allosteric regulator of PCK, binding at the active site and at a surface activating site (Glu508 and Glu511).

View Article and Find Full Text PDF

Escherichia coli phosphoenolpyruvate (PEP) carboxykinase catalyzes the decarboxylation of oxaloacetate and transfer of the gamma-phosphoryl group of ATP to yield PEP, ADP, and CO2. The interaction of the enzyme with the substrates originates important domain movements in the protein. In this work, the interaction of several substrates and ligands with E.

View Article and Find Full Text PDF