Background: Understanding the impacts of climate change on forest aboveground biomass is a high priority for land managers. High elevation subalpine forests provide many important ecosystem services, including carbon sequestration, and are vulnerable to climate change, which has altered forest structure and disturbance regimes. Although large, regional studies have advanced aboveground biomass mapping with satellite data, typically using a general approach broadly calibrated or trained with available field data, it is unclear how well these models work in less prevalent and highly heterogeneous forest types such as the subalpine.
View Article and Find Full Text PDFIn this review and synthesis, we argue that California is an important test case for the nation and world because terrestrial biodiversity is very high, present and anticipated threats to biodiversity from climate change and other interacting stressors are severe, and innovative approaches to protecting biodiversity in the context of climate change are being developed and tested. We first review salient dimensions of California's terrestrial physical, biological, and human diversity. Next, we examine four facets of the threat to their sustainability of these dimensions posed by climate change: direct impacts, illustrated by a new analysis of shifting diversity hotspots for plants; interactive effects involving invasive species, land-use change, and other stressors; the impacts of changing fire regimes; and the impacts of land-based renewable energy development.
View Article and Find Full Text PDFWildfires may facilitate climate tracking of forest species moving upslope or north in latitude. For subalpine tree species, for which higher elevation habitat is limited, accelerated replacement by lower elevation montane tree species following fire may hasten extinction risk. We used a dataset of postfire tree regeneration spanning a broad geographic range to ask whether the fire facilitated upslope movement of montane tree species at the montane-to-subalpine ecotone.
View Article and Find Full Text PDFIncreasing fire severity and warmer, drier postfire conditions are making forests in the western United States (West) vulnerable to ecological transformation. Yet, the relative importance of and interactions between these drivers of forest change remain unresolved, particularly over upcoming decades. Here, we assess how the interactive impacts of changing climate and wildfire activity influenced conifer regeneration after 334 wildfires, using a dataset of postfire conifer regeneration from 10,230 field plots.
View Article and Find Full Text PDFForests currently face numerous stressors, raising questions about processes of forest recovery as well as the role of humans in stimulating recovery by planting trees that might not otherwise regenerate. Theoretically, planted trees can also provide a seed source for further recruitment once the planted trees become reproductive, acting as "nucleation" sites; however, it is unclear whether changing site conditions over time (e.g.
View Article and Find Full Text PDFSoils derived from ultramafic parent materials (hereafter serpentine) provide habitat for unique plant communities containing species with adaptations to the low nutrient levels, high magnesium : calcium ratios, and high metal content (Ni, Zn) that characterize serpentine. Plants on serpentine have long been studied in evolution and ecology, and plants adapted to serpentine contribute disproportionately to plant diversity in many parts of the world. In 2000-2003, serpentine plant communities were sampled at 107 locations representing the full range of occurrence of serpentine in California, USA, spanning large gradients in climate.
View Article and Find Full Text PDFExtreme drought and increasing temperatures can decrease the resilience of plant communities to fires. Not only may extremely dry conditions during or after fires lead to higher plant mortality and poorer recruitment, but severe pre-fire droughts may reduce the seed production and belowground vigor that are essential to post-fire plant recovery, and may indirectly facilitate invasion. We studied survival, recruitment, and growth of shrubs and herbs in chaparral (shrubland) communities in Northern California after a 2015 fire that immediately followed California's extreme 3-yr drought.
View Article and Find Full Text PDFHigh severity fire may promote or reduce plant understory diversity in forests. However, few empirical studies have tested long-standing theoretical predictions that productivity may help to explain observed variation in post-fire plant diversity. Support for the influence of productivity on disturbance-diversity relationships is found predominantly in experimental grasslands, while tests over large areas with natural disturbance and productivity gradients are few and have yielded inconsistent results.
View Article and Find Full Text PDFWe review science-based adaptation strategies for western North American (wNA) forests that include restoring active fire regimes and fostering resilient structure and composition of forested landscapes. As part of the review, we address common questions associated with climate adaptation and realignment treatments that run counter to a broad consensus in the literature. These include the following: (1) Are the effects of fire exclusion overstated? If so, are treatments unwarranted and even counterproductive? (2) Is forest thinning alone sufficient to mitigate wildfire hazard? (3) Can forest thinning and prescribed burning solve the problem? (4) Should active forest management, including forest thinning, be concentrated in the wildland urban interface (WUI)? (5) Can wildfires on their own do the work of fuel treatments? (6) Is the primary objective of fuel reduction treatments to assist in future firefighting response and containment? (7) Do fuel treatments work under extreme fire weather? (8) Is the scale of the problem too great? Can we ever catch up? (9) Will planting more trees mitigate climate change in wNA forests? And (10) is post-fire management needed or even ecologically justified? Based on our review of the scientific evidence, a range of proactive management actions are justified and necessary to keep pace with changing climatic and wildfire regimes and declining forest heterogeneity after severe wildfires.
View Article and Find Full Text PDFIn temperate forests, elevated frequency of drought related disturbances will likely increase the incidence of interactions between disturbances such as bark beetle epidemics and wildfires. Our understanding of the influence of recent drought and insect-induced tree mortality on wildfire severity has largely lacked information from forests adapted to frequent fire. A recent unprecedented tree mortality event in California's Sierra Nevada provides an opportunity to examine this disturbance interaction in historically frequent-fire forests.
View Article and Find Full Text PDFLarge, severe fires are becoming more frequent in many forest types across the western United States and have resulted in tree mortality across tens of thousands of hectares. Conifer regeneration in these areas is limited because seeds must travel long distances to reach the interior of large burned patches and establishment is jeopardized by increasingly hot and dry conditions. To better inform postfire management in low elevation forests of California, USA, we collected 5-yr postfire recovery data from 1,234 study plots in 19 wildfires that burned from 2004-2012 and 18 yrs of seed production data from 216 seed fall traps (1999-2017).
View Article and Find Full Text PDFDuring the past century, systematic wildfire suppression has decreased fire frequency and increased fire severity in the western United States of America. While this has resulted in large ecological changes aboveground such as altered tree species composition and increased forest density, little is known about the long-term, belowground implications of altered, ecologically novel, fire regimes, especially on soil biological processes. To better understand the long-term implications of ecologically novel, high-severity fire, we used a 44-yr high-severity fire chronosequence in the Sierra Nevada where forests were historically adapted to frequent, low-severity fire, but were fire suppressed for at least 70 yr.
View Article and Find Full Text PDFThe persistence and distribution of species under changing climates can be affected by both direct effects of the environment and indirect effects via biotic interactions. However, the relative importance of direct and indirect climate effects on recruitment stages is poorly understood. We conducted a manipulative experiment to test the multiway interaction of direct and competition-mediated effects of climate change on vegetation dynamics.
View Article and Find Full Text PDFRising temperatures and more frequent and severe droughts are driving increases in tree mortality in forests around the globe. However, in many cases, the likely trajectories of forest recovery following drought-related mortality are poorly understood. In many fire-suppressed western U.
View Article and Find Full Text PDFExtreme drought stress and associated bark beetle population growth contributed to an extensive tree mortality event in California, USA, resulting in more than 129 million trees dying between 2012 and 2016. Although drought is an important driver of this mortality event, past and ongoing fire suppression and the consequent densification of forests may have contributed. In some areas, land management agencies have worked to reduce stand density through mechanical treatments and prescribed fire to restore forests to less dense, more open conditions that are presumably more resilient to disturbance and changing climate.
View Article and Find Full Text PDFDisturbance such as wildfire may create opportunities for plant communities to reorganize in response to climate change. The interaction between climate change and disturbance may be particularly important in forests, where many of the foundational plant species (trees) are long-lived and where poor initial tree establishment can result in conversion to shrub- or graminoid-dominated systems. The response of post-disturbance vegetation establishment to post-disturbance weather conditions, particularly to extreme weather, could therefore provide useful information about how forest communities will respond to climate change.
View Article and Find Full Text PDFMany global ecosystems have undergone shifts in fire regimes in recent decades, such as changes in fire size, frequency, and/or severity. Recent research shows that increases in fire size, frequency, and severity can lead to long-persisting deforestation, but the consequences of shifting fire regimes for biodiversity of other vegetative organisms (such as understory plants, fungi, and lichens) remain poorly understood. Understanding lichen responses to wildfire is particularly important because lichens play crucial roles in nutrient cycling and supporting wildlife in many ecosystems.
View Article and Find Full Text PDFShifting disturbance regimes can have cascading effects on many ecosystems processes. This is particularly true when the scale of the disturbance no longer matches the regeneration strategy of the dominant vegetation. In the yellow pine and mixed conifer forests of California, over a century of fire exclusion and the warming climate are increasing the incidence and extent of stand-replacing wildfire; such changes in severity patterns are altering regeneration dynamics by dramatically increasing the distance from live tree seed sources.
View Article and Find Full Text PDFHistorical forest conditions are often used to inform contemporary management goals because historical forests are considered to be resilient to ecological disturbances. The General Land Office (GLO) surveys of the late 19th and early 20th centuries provide regionally quasi-contiguous data sets of historical forests across much of the Western United States. Multiple methods exist for estimating tree density from point-based sampling such as the GLO surveys, including distance-based and area-based approaches.
View Article and Find Full Text PDFQuantifying historical fire regimes provides important information for managing contemporary forests. Historical fire frequency and severity can be estimated using several methods; each method has strengths and weaknesses and presents challenges for interpretation and verification. Recent efforts to quantify the timing of historical high-severity fire events in forests of western North America have assumed that the "stand age" variable from the US Forest Service Forest Inventory and Analysis (FIA) program reflects the timing of historical high-severity (i.
View Article and Find Full Text PDFCorrelative species distribution models (SDMs) are widely used in studies of climate change impacts, yet are often criticized for failing to incorporate disturbance processes that can influence species distributions. Here we use two temporally independent data sets of vascular plant distributions, climate data, and fire atlas data to examine the influence of disturbance history on SDM projection accuracy through time in the mountain ranges of California, USA. We used hierarchical partitioning to examine the influence of fire occurrence on the distribution of 144 vascular plant species and built a suite of SDMs to examine how the inclusion of fire-related predictors (fire occurrence and departure from historical fire return intervals) affects SDM projection accuracy.
View Article and Find Full Text PDFBackground: Forest fuel treatments have been proposed as tools to stabilize carbon stocks in fire-prone forests in the Western U.S.A.
View Article and Find Full Text PDF