Publications by authors named "Hugh Robertson"

Background: Adaptations by arthropod pests to host plant defenses of crops determine their impacts on agricultural production. The larval host range of western corn rootworm, Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae), is restricted to maize and a few grasses. Resistance of D.

View Article and Find Full Text PDF

Supervolcanoes are volcanoes capable of mega-colossal eruptions that emit more than 1,000 km of ash and other particles. The earth's most recent mega-colossal eruption was the Oruanui eruption of the Taupo supervolcano 25,580 years before present (YBP) on the central North Island of New Zealand. This eruption blanketed major swaths of the North Island in thick layers of ash and igneous rock, devastating habitats and likely causing widespread population extinctions.

View Article and Find Full Text PDF

Diabrocite corn rootworms are one of the most economically significant pests of maize in the United States and Europe and an emerging model for insect-plant interactions. Genome sizes of several species in the genus Diabrotica were estimated using flow cytometry along with that of Acalymma vittatum as an outgroup. Genome sizes ranged between 1.

View Article and Find Full Text PDF

At each molt of Manduca, the large dermal secretory cells expel the protein contents of their vacuoles into the hemocoel. The constellation of proteins expelled at the last larval-pupal molt, however, differs qualitatively from those proteins released at earlier larval-larval molts. Secretory cells at the two stages not only have different lectin staining properties but also have different proteins that separate on two-dimensional gels.

View Article and Find Full Text PDF

Small and fragmented populations may become rapidly differentiated due to genetic drift, making it difficult to distinguish whether neutral genetic structure is a signature of recent demographic events, or of long-term evolutionary processes that could have allowed populations to adaptively diverge. We sequenced 52 whole genomes to examine Holocene demographic history and patterns of adaptation in kiwi (), and recovered 11 strongly differentiated genetic clusters corresponding to previously recognized lineages. Demographic models suggest that all 11 lineages experienced dramatic population crashes relative to early- or mid-Holocene levels.

View Article and Find Full Text PDF

In contrast to the western honey bee, , other honey bee species have been largely neglected despite their importance and diversity. The genetic basis of the evolutionary diversification of honey bees remains largely unknown. Here, we provide a genome-wide comparison of three honey bee species, each representing one of the three subgenera of honey bees, namely the dwarf (), giant (), and cavity-nesting () honey bees with bumblebees as an outgroup.

View Article and Find Full Text PDF

Background: The stable fly, Stomoxys calcitrans, is a major blood-feeding pest of livestock that has near worldwide distribution, causing an annual cost of over $2 billion for control and product loss in the USA alone. Control of these flies has been limited to increased sanitary management practices and insecticide application for suppressing larval stages. Few genetic and molecular resources are available to help in developing novel methods for controlling stable flies.

View Article and Find Full Text PDF

Globally, wetlands are in decline due to anthropogenic modification and climate change. Knowledge about the spatial distribution of biodiversity and biological processes within wetlands provides essential baseline data for predicting and mitigating the effects of present and future environmental change on these critical ecosystems. To explore the potential for environmental DNA (eDNA) to provide such insights, we used 16S rRNA metabarcoding to characterise prokaryote communities and predict the distribution of prokaryote metabolic pathways in peats and sediments up to 4m below the surface across seven New Zealand wetlands.

View Article and Find Full Text PDF
Article Synopsis
  • An amendment has been published regarding the original article.
  • This amendment offers updates or clarifications to the information presented in the article.
  • Readers can access the amendment through the original article for further details.
View Article and Find Full Text PDF

Among the most familiar forms of human-driven evolution on ecological time scales is the rapid acquisition of resistance to pesticides by insects. Since the widespread adoption of synthetic organic insecticides in the mid-twentieth century, over 500 arthropod species have evolved resistance to at least one insecticide. Efforts to determine the genetic bases of insecticide resistance have historically focused on individual loci, but the availability of genomic tools has facilitated the screening of genome-wide characteristics.

View Article and Find Full Text PDF
Article Synopsis
  • The western flower thrips, a major agricultural pest, has its first genome sequenced, revealing important genetic data that can help understand its biology and resistance to pesticides.
  • The genome assembly is notably GC-rich, with 16,859 genes identified, including expansions in genes related to environmental sensing and detoxification, which are crucial for survival in agricultural settings.
  • Findings also highlight unique aspects of thrips development and immune response, such as the lack of certain immune genes, providing valuable insights into the pest's behavior and adaptation strategies.
View Article and Find Full Text PDF
Article Synopsis
  • - Bumblebees are crucial for ecosystems and agriculture, with both social and solitary lifestyles, yet many species are declining due to factors like habitat loss and climate change.
  • - Researchers sequenced the genomes of 17 bumblebee species to understand genetic diversity and dynamics, uncovering variations that affect their ecology and behavior.
  • - The study highlights changes in genes related to foraging, immunity, and adaptations, showcasing how bumblebee genomes have evolved and emphasizing their ecological importance.
View Article and Find Full Text PDF

Many organisms enter a dormant state in their life cycle to deal with predictable changes in environments over the course of a year. The timing of dormancy is therefore a key seasonal adaptation, and it evolves rapidly with changing environments. We tested the hypothesis that differences in the timing of seasonal activity are driven by differences in the rate of development during diapause in , a fly specialized to feed on fruits of seasonally limited host plants.

View Article and Find Full Text PDF

Background: Halyomorpha halys (Stål), the brown marmorated stink bug, is a highly invasive insect species due in part to its exceptionally high levels of polyphagy. This species is also a nuisance due to overwintering in human-made structures. It has caused significant agricultural losses in recent years along the Atlantic seaboard of North America and in continental Europe.

View Article and Find Full Text PDF

The dipluran two-pronged bristletail Campodea augens is a blind ancestrally wingless hexapod with the remarkable capacity to regenerate lost body appendages such as its long antennae. As sister group to Insecta (sensu stricto), Diplura are key to understanding the early evolution of hexapods and the origin and evolution of insects. Here we report the 1.

View Article and Find Full Text PDF

Parasitoid wasps are among the most speciose animals, yet have relatively few available genomic resources. We report a draft genome assembly of the wasp Diachasma alloeum (Hymenoptera: Braconidae), a host-specific parasitoid of the apple maggot fly Rhagoletis pomonella (Diptera: Tephritidae), and a developing model for understanding how ecological speciation can "cascade" across trophic levels. Identification of gene content confirmed the overall quality of the draft genome, and we manually annotated ∼400 genes as part of this study, including those involved in oxidative phosphorylation, chemosensation, and reproduction.

View Article and Find Full Text PDF

Background: The ability to generate long sequencing reads and access long-range linkage information is revolutionizing the quality and completeness of genome assemblies. Here we use a hybrid approach that combines data from four genome sequencing and mapping technologies to generate a new genome assembly of the honeybee Apis mellifera. We first generated contigs based on PacBio sequencing libraries, which were then merged with linked-read 10x Chromium data followed by scaffolding using a BioNano optical genome map and a Hi-C chromatin interaction map, complemented by a genetic linkage map.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the genome sequencing of the milkweed bug Oncopeltus fasciatus, contributing to the understanding of the Hemiptera insect order.
  • The genome, which is 926 Mb in size, provides insights into protein-coding genes, molecular evolution, and the relationship between feeding ecology and gene structure.
  • This research enhances the molecular genetic toolkit for hemipteran species and emphasizes Oncopeltus as a valuable experimental model for future studies in insect genomics.
View Article and Find Full Text PDF

We examined the genome of the soybean aphid, Aphis glycines, and an updated genome assembly of the pea aphid, Acyrthosiphon pisum, for members of the three major families of chemoreceptors, the Odorant Receptors (ORs), Gustatory Receptors (GRs) and Ionotropic Receptors (IRs), as well as the Odorant Binding Proteins (OBPs). The soybean aphid has 47 ORs, 61 GRs, 19 IRs, and 10 OBPs, compared with 87 ORs, 78 Grs, 19 IRs, and 18 OBPs in the pea aphid, with variable numbers of pseudogenes in the OR and GR families. Phylogenetic analysis reveals that while all of the IRs are simple orthologs between these two species, the OR, GR, and OBP families in the pea aphid have experienced major expansions of particular gene lineages and fewer losses of gene lineages.

View Article and Find Full Text PDF
Article Synopsis
  • Hemipteroid insects, which make up over 10% of insect diversity, are important in ecosystems but their evolutionary relationships have been unclear in past studies.
  • Recent phylogenomic analyses of 193 hemipteroid insect samples offer a clearer phylogeny, confirming the monophyly of the three main orders: Psocodea, Thysanoptera, and Hemiptera, and suggesting Thysanoptera is closely related to Hemiptera.
  • The study also indicates that hemipteroid insects began diversifying over 365 million years ago and discusses the impact of these findings on understanding insect evolution and traits.
View Article and Find Full Text PDF

Background: Having conquered water surfaces worldwide, the semi-aquatic bugs occupy ponds, streams, lakes, mangroves, and even open oceans. The diversity of this group has inspired a range of scientific studies from ecology and evolution to developmental genetics and hydrodynamics of fluid locomotion. However, the lack of a representative water strider genome hinders our ability to more thoroughly investigate the molecular mechanisms underlying the processes of adaptation and diversification within this group.

View Article and Find Full Text PDF

Female Aedes aegypti mosquitoes infect more than 400 million people each year with dangerous viral pathogens including dengue, yellow fever, Zika and chikungunya. Progress in understanding the biology of mosquitoes and developing the tools to fight them has been slowed by the lack of a high-quality genome assembly. Here we combine diverse technologies to produce the markedly improved, fully re-annotated AaegL5 genome assembly, and demonstrate how it accelerates mosquito science.

View Article and Find Full Text PDF