The orexinergic system of the lateral hypothalamus plays crucial roles in arousal, feeding behavior, and reward modulation. Most research has focused on adult rodents, overlooking orexins' potential role in the nervous system development. This study, using electrophysiological and molecular tools, highlights importance of orexinergic signaling in the postnatal development of the rodent dorsolateral geniculate nucleus (DLG), a primary visual thalamic center.
View Article and Find Full Text PDFIn mammals, intrinsic 24 h or circadian rhythms are primarily generated by the suprachiasmatic nuclei (SCN). Rhythmic daily changes in the transcriptome and proteome of SCN cells are controlled by interlocking transcription-translation feedback loops (TTFLs) of core clock genes and their proteins. SCN cells function as autonomous circadian oscillators, which synchronize through intercellular neuropeptide signalling.
View Article and Find Full Text PDFSleep is fundamental to health. The aim of this study was to analyse and determine factors predicting sleep quality during and after national lockdowns due to severe acute respiratory syndrome coronavirus 2 (COVID-19) in the UK. A longitudinal online survey-based study (SleepQuest) involving UK adults was administered in Spring 2020, Winter 2020, and Winter 2022 including questionnaires probing sleep quality, depression, anxiety, beliefs about sleep, demographics, COVID-19 status, and exercise.
View Article and Find Full Text PDFAnalysis of ex vivo Per2 bioluminescent rhythm previously recorded in the mouse dorsal vagal complex reveals a characteristic phase relationship between three distinct circadian oscillators. These signals represent core clock gene expression in the area postrema (AP), the nucleus of the solitary tract (NTS) and the ependymal cells surrounding the 4th ventricle (4Vep). Initially, the data suggests a consistent phasing in which the AP peaks first, followed shortly by the NTS, with the 4Vep peaking 8-9 h later.
View Article and Find Full Text PDFTimed daily access to a running-wheel (scheduled voluntary exercise; SVE) synchronizes rodent circadian rhythms and promotes stable, 24h rhythms in animals with genetically targeted impairment of neuropeptide signaling ( mice). Here we used RNA-seq and/or qRT-PCR to assess how this neuropeptide signaling impairment as well as SVE shapes molecular programs in the brain clock (suprachiasmatic nuclei; SCN) and peripheral tissues (liver and lung). Compared to animals, the SCN transcriptome of mice showed extensive dysregulation which included core clock components, transcription factors, and neurochemicals.
View Article and Find Full Text PDFThe intergeniculate leaflet and ventral lateral geniculate nucleus (IGL/VLG) are subcortical structures involved in entrainment of the brain's circadian system to photic and non-photic (e.g. metabolic and arousal) cues.
View Article and Find Full Text PDFThe dorsal vagal complex (DVC) is a key hub for integrating blood-borne, central, and vagal ascending signals that convey important information on metabolic and homeostatic state. Research implicates the DVC in the termination of food intake and the transition to satiety, and consequently it is considered a brainstem satiety centre. In natural and laboratory settings, animals have distinct times of the day or circadian phases at which they prefer to eat, but if and how circadian signals affect DVC activity is not well understood.
View Article and Find Full Text PDFMelatonin is a neurohormone released in a circadian manner with peak levels at night. Melatonin mediates its effects mainly through G protein-coupled MT and MT receptors. Drugs acting on melatonin receptors are indicated for circadian rhythm- and sleep-related disorders.
View Article and Find Full Text PDFFront Behav Neurosci
January 2022
The neural circadian system consists of the master circadian clock in the hypothalamic suprachiasmatic nuclei (SCN) communicating time of day cues to the rest of the body including other brain areas that also rhythmically express circadian clock genes. Over the past 16 years, evidence has emerged to indicate that the habenula of the epithalamus is a candidate extra-SCN circadian oscillator. When isolated from the SCN, the habenula sustains rhythms in clock gene expression and neuronal activity, with the lateral habenula expressing more robust rhythms than the adjacent medial habenula.
View Article and Find Full Text PDFTemporal partitioning of daily food intake is crucial for survival and involves the integration of internal circadian states and external influences such as the light-dark cycle and dietary composition. These intrinsic and extrinsic factors are interdependent with misalignment of circadian rhythms promoting body weight gain, while consumption of a calorie-dense diet elevates the risk of obesity and blunts circadian rhythms. Recently, we defined the circadian properties of the dorsal vagal complex of the brainstem, a structure implicated in the control of food intake and autonomic tone, but whether and how 24 h rhythms in this area are influenced by diet remains unresolved.
View Article and Find Full Text PDFRegular exercise is important for physical and mental health. An underexplored and intriguing property of exercise is its actions on the body's 24 h or circadian rhythms. Molecular clock cells in the brain's suprachiasmatic nuclei (SCN) use electrical and chemical signals to orchestrate their activity and convey time of day information to the rest of the brain and body.
View Article and Find Full Text PDFRecently, we found that the dorsal vagal complex displays autonomous circadian timekeeping properties The dorsal motor nucleus of the vagus (DMV) is an executory part of this complex - a source of parasympathetic innervation of the gastrointestinal tract Here, we reveal daily changes in the neuronal activities of the rat DMV, including firing rate, intrinsic excitability and synaptic input - all of these peaking in the late day Additionally, we establish that short term high-fat diet disrupts these daily rhythms, boosting the variability in the firing rate, but blunting the DMV responsiveness to ingestive cues These results help us better understand daily control over parasympathetic outflow and provide evidence on its dependence on the high-fat diet ABSTRACT: The suprachiasmatic nuclei (SCN) of the hypothalamus function as the brain's primary circadian clock, but circadian clock genes are also rhythmically expressed in several extra-SCN brain sites where they can exert local temporal control over physiology and behaviour. Recently, we found that the hindbrain dorsal vagal complex possesses strong daily timekeeping capabilities, with the area postrema and nucleus of the solitary tract exhibiting the most robust clock properties. The possibility that the executory part of this complex - the dorsal motor nucleus of the vagus (DMV) - also exhibits daily changes has not been extensively studied.
View Article and Find Full Text PDFPhasic pattern of neuronal activity has been previously described in detail for magnocellular vasopressin neurons in the hypothalamic paraventricular and supraoptic nuclei. This characteristic bistable pattern consists of alternating periods of electrical silence and elevated neuronal firing, implicated in neuropeptide release. Here, with the use of multi-electrode array recordings , we aimed to study the firing pattern of neurons in the nucleus of the solitary tract (NTS) - the brainstem hub for homeostatic, cardio-vascular, and metabolic processes.
View Article and Find Full Text PDFMethods Mol Biol
March 2021
The ability to record ensemble action potential (AP) discharge frequencies from large populations of neurons over extended periods of time in vitro offers clear advantages in neuroscience and circadian biology research. Here, we provide an overview of a step-by-step method to perform multisite extracellular AP activity recordings in suprachiasmatic and mediobasal hypothalamic nuclei brain slices, using a state-of-the-art perforated multielectrode array system. Further, we describe in detail a setup architecture which systematically delivers stable, high-quality recordings with excellent anatomical accuracy and consistency.
View Article and Find Full Text PDFBackground: Heart rate follows a diurnal variation, and slow heart rhythms occur primarily at night.
Objective: The lower heart rate during sleep is assumed to be neural in origin, but here we tested whether a day-night difference in intrinsic pacemaking is involved.
Methods: In vivo and in vitro electrocardiographic recordings, vagotomy, transgenics, quantitative polymerase chain reaction, Western blotting, immunohistochemistry, patch clamp, reporter bioluminescence recordings, and chromatin immunoprecipitation were used.
Although the mammalian rest-activity cycle is controlled by a "master clock" in the suprachiasmatic nucleus (SCN) of the hypothalamus, it is unclear how firing of individual SCN neurons gates individual features of daily activity. Here, we demonstrate that a specific transcriptomically identified population of mouse VIP+ SCN neurons is active at the "wrong" time of day-nighttime-when most SCN neurons are silent. Using chemogenetic and optogenetic strategies, we show that these neurons and their cellular clocks are necessary and sufficient to gate and time nighttime sleep but have no effect upon daytime sleep.
View Article and Find Full Text PDFMetabolic and cardiovascular processes controlled by the hindbrain exhibit 24 h rhythms, but the extent to which the hindbrain possesses endogenous circadian timekeeping is unresolved. Here we provide compelling evidence that genetic, neuronal, and vascular activities of the brainstem's dorsal vagal complex are subject to intrinsic circadian control with a crucial role for the connection between its components in regulating their rhythmic properties. Robust 24 h variation in clock gene expression in vivo and neuronal firing ex vivo were observed in the area postrema (AP) and nucleus of the solitary tract (NTS), together with enhanced nocturnal responsiveness to metabolic cues.
View Article and Find Full Text PDFDrinking behavior and osmotic regulatory mechanisms exhibit clear daily variation which is necessary for achieving the homeostatic osmolality. In mammals, the master clock in the brain's suprachiasmatic nuclei has long been held as the main driver of circadian (24 h) rhythms in physiology and behavior. However, rhythmic clock gene expression in other brain sites raises the possibility of local circadian control of neural activity and function.
View Article and Find Full Text PDFTwenty-four hour rhythms of physiology and behavior are driven by the environment and an internal endogenous timing system. Daily restricted feeding (RF) in nocturnal rodents during their inactive phase initiates food anticipatory activity (FAA) and a reorganization of the typical 24-hour sleep-wake structure. Here, we investigate the effects of daytime feeding, where food access was restricted to 4 hours during the light period ZT4-8 (Zeitgeber time; ZT0 is lights on), on sleep-wake architecture and sleep homeostasis in mice.
View Article and Find Full Text PDFThe kidney harbors one of the strongest circadian clocks in the body. Kidney failure has long been known to cause circadian sleep disturbances. Using an adenine-induced model of chronic kidney disease (CKD) in mice, we probe the possibility that such sleep disturbances originate from aberrant circadian rhythms in kidney.
View Article and Find Full Text PDFGlucose-sensing neurons are located in several parts of the brain, but are concentrated in the ventromedial nucleus of the hypothalamus (VMH). The importance of these VMH neurons in glucose homeostasis is well-established, however, little is known about their individual identity. In the present study, we identified a distinct glucose-sensing population in the VMH and explored its place in the glucose-regulatory network.
View Article and Find Full Text PDFSuprachiasmatic nuclei (SCN) neurons contain an intracellular molecular circadian clock and the Cryptochromes (CRY1/2), key transcriptional repressors of this molecular apparatus, are subject to post-translational modification through ubiquitination and targeting for proteosomal degradation by the ubiquitin E3 ligase complex. Loss-of-function point mutations in a component of this ligase complex, Fbxl3, delay CRY1/2 degradation, reduce circadian rhythm strength, and lengthen the circadian period by ∼2.5 h.
View Article and Find Full Text PDFBackground: Alterations in environmental light and intrinsic circadian function have strong associations with mood disorders. The neural origins underpinning these changes remain unclear, although genetic deficits in the molecular clock regularly render mice with altered mood-associated phenotypes.
Methods: A detailed circadian and light-associated behavioral characterization of the Na/K-ATPase α3 Myshkin (Myk/+) mouse model of mania was performed.
Pharmacol Biochem Behav
November 2017
Over the past 20years, substantive research has firmly implicated the lateral habenula in myriad neural processes including addiction, depression, and sleep. More recently, evidence has emerged suggesting that the lateral habenula is a component of the brain's intrinsic daily or circadian timekeeping system. This system centers on the master circadian pacemaker in the suprachiasmatic nuclei of the hypothalamus that is synchronized to the external world through environmental light information received directly from the eye.
View Article and Find Full Text PDF