Publications by authors named "Hugh Britton"

Current therapy for hypervascular cancers, e.g., hepatocellular carcinoma, includes occlusion of the tumor blood supply by arterial infusion of embolic microspheres (beads) suspended in iodine-based contrast under fluoroscopic guidance.

View Article and Find Full Text PDF

Liquid formulations have a well-established role in therapeutic embolisation of blood vessels with the widespread use of cyanoacrylate glues, precipitating polymer suspensions, sclerosing agents and viscous emulsions of oil and chemotherapeutic agents. There is currently an emerging market for next generation liquid embolics which aim to address some of the short-comings of the currently used products. These next generation systems use varying chemistries in their approach to formulate new systems including polymerising, precipitating and phase-transitioning mechanisms to form solidified masses in situ within the vasculature.

View Article and Find Full Text PDF

We have developed a straightforward and efficient method of introducing radiopacity into Polyvinyl alcohol (PVA)-2-Acrylamido-2-methylpropane sulfonic acid (AMPS) hydrogel beads (DC Bead™) that are currently used in the clinic to treat liver malignancies. Coupling of 2,3,5-triiodobenzaldehyde to the PVA backbone of pre-formed beads yields a uniformly distributed level of iodine attached throughout the bead structure (~150mg/mL) which is sufficient to be imaged under standard fluoroscopy and computed tomography (CT) imaging modalities used in treatment procedures (DC Bead LUMI™). Despite the chemical modification increasing the density of the beads to ~1.

View Article and Find Full Text PDF

We present herein our recent efforts towards the synthesis of epoxydiynes which represent an unusual structural feature of the neocarzinostatin chromophore. A number of different routes to these epoxydiynes have been explored with varying success. Ultimately a concise and convergent approach was developed, which involved the addition of an allenyl zinc bromide to propargylic ketones/aldehydes followed by epoxide formation.

View Article and Find Full Text PDF