Publications by authors named "Hugh Barton"

Although external concentrations are more readily quantified and often used as the metric for regulating and mitigating exposures to environmental chemicals, the toxicological response to an environmental chemical is more directly related to its internal concentrations than the external concentration. The processes of absorption, distribution, metabolism, and excretion (ADME) determine the quantitative relationship between the external and internal concentrations, and these processes are often susceptible to saturation at high concentrations, which can lead to nonlinear changes in internal concentrations that deviate from proportionality. Using generic physiologically-based pharmacokinetic (PBPK) models, we explored how saturable absorption or clearance influence the shape of the internal to external concentration (IEC) relationship.

View Article and Find Full Text PDF

Top dose selection for repeated dose animal studies has generally focused on identification of apical endpoints, use of the limit dose, or determination of a maximum tolerated dose (MTD). The intent is to optimize the ability of toxicity tests performed in a small number of animals to detect effects for hazard identification. An alternative approach, the kinetically derived maximum dose (KMD), has been proposed as a mechanism to integrate toxicokinetic (TK) data into the dose selection process.

View Article and Find Full Text PDF

Many compounds that appear promising in preclinical species, fail in human clinical trials due to safety concerns. The FDA has strongly encouraged the application of modeling in drug development to improve product safety. This study illustrates how DILIsym, a computational representation of liver injury, was able to reproduce species differences in liver toxicity due to PF-04895162 (ICA-105665).

View Article and Find Full Text PDF

The hepatic risk matrix (HRM) was developed and used to differentiate lead clinical and back-up drug candidates against competitor/marketed drugs within the same pharmaceutical class for their potential to cause human drug-induced liver injury (DILI). The hybrid HRM scoring system blends physicochemical properties (Rule of Two Model: dose and lipophilicity or Partition Model: dose, ionization state, lipophilicity, and fractional carbon bond saturation) with common toxicity mechanisms (cytotoxicity, mitochondrial dysfunction, and bile salt export pump (BSEP) inhibition) that promote DILI. HRM scores are based on bracketed safety margins (<1, 1-10, 10-100, and >100× clinical ).

View Article and Find Full Text PDF

Monoclonal antibody (mAb) pharmacokinetics (PK) have largely been predicted via allometric scaling with little consideration for cross-species differences in neonatal Fc receptor (FcRn) affinity or clearance/distribution mechanisms. To address this, we developed a mAb physiologically-based PK model that describes the intracellular trafficking and FcRn recycling of mAbs in a human FcRn transgenic homozygous mouse and human. This model uses mAb-specific in vitro data together with species-specific FcRn tissue expression, tissue volume, and blood-flow physiology to predict mAb in vivo linear PK a priori.

View Article and Find Full Text PDF

Background: Ethnic variability in the pharmacokinetics of organic anion transporting polypeptide (OATP) 1B1 substrates has been observed, but its basis is unclear. A previous study hypothesizes that, without applying an intrinsic ethnic variability in transporter activity, allele frequencies of transporters cannot explain observed ethnic variability in pharmacokinetics. However, this hypothesis contradicts the data collected from compounds that are OATP1B1 substrates but not breast cancer resistance protein (BCRP) substrates.

View Article and Find Full Text PDF

The physiologically based pharmacokinetic (PBPK) model for liver transporter substrates has been established previously and used for predicting drug-drug interactions (DDI) and for clinical practice guidance. So far, nearly all the published PBPK models for liver transporter substrates have one or more hepatic clearance processes (i.e.

View Article and Find Full Text PDF

Objectives: To assess the ability of a previously developed hybrid physiology-based pharmacokinetic-pharmacodynamic (PBPKPD) model in rats to predict the dopamine D2 receptor occupancy (D2RO) in human striatum following administration of antipsychotic drugs.

Methods: A hybrid PBPKPD model, previously developed using information on plasma concentrations, brain exposure and D2RO in rats, was used as the basis for the prediction of D2RO in human. The rat pharmacokinetic and brain physiology parameters were substituted with human population pharmacokinetic parameters and human physiological information.

View Article and Find Full Text PDF

Severe drug-induced liver injury (DILI) remains a major safety issue due to its frequency of occurrence, idiosyncratic nature, poor prognosis, and diverse underlying mechanisms. Numerous experimental approaches have been published to improve human DILI prediction with modest success. A retrospective analysis of 125 drugs (70 = most-DILI, 55 = no-DILI) from the Food and Drug Administration Liver Toxicity Knowledge Base was used to investigate DILI prediction based on consideration of human exposure alone or in combination with mechanistic assays of hepatotoxic liabilities (cytotoxicity, bile salt export pump inhibition, or mitochondrial inhibition/uncoupling).

View Article and Find Full Text PDF

Inhibition of the bile salt export pump (BSEP) has been linked to incidence of drug-induced liver injury (DILI), presumably by the accumulation of toxic bile acids in the liver. We have previously constructed and validated a model of bile acid disposition within DILIsym®, a mechanistic model of DILI. In this paper, we use DILIsym® to simulate the DILI response of the hepatotoxic BSEP inhibitors bosentan and CP-724,714 and the non-hepatotoxic BSEP inhibitor telmisartan in humans in order to explore whether we can predict that hepatotoxic BSEP inhibitors can cause bile acid accumulation to reach toxic levels.

View Article and Find Full Text PDF

A previously developed physiologically based pharmacokinetic model for hepatic transporter substrates was extended to an organic anion transporting polypeptide substrate, telmisartan. Predictions used in vitro data from sandwich culture human hepatocyte and human liver microsome assays. We have developed a novel method to calibrate partition coefficients (Kps) between nonliver tissues and plasma on the basis of published human positron emission tomography (PET) data to decrease the uncertainty in tissue distribution introduced by in silico-predicted Kps.

View Article and Find Full Text PDF

Hepatobiliary transport mechanisms have been identified to play a significant role in determining the systemic clearance for a number of widely prescribed drugs and an increasing number of new molecular entities (NMEs). While determining the pharmacokinetics, drug transporters also regulate the target tissue exposure and play a key role in regulating the pharmacological and/or toxicological responses. Consequently, it is of great relevance in drug discovery and development to assess hepatic transporter activity in regard to pharmacokinetic and dose predictions and to evaluate pharmacokinetic variability associated with drug-drug interactions (DDIs) and genetic variants.

View Article and Find Full Text PDF

Objectives: Dopamine D2 receptor occupancy (D2RO) is the major determinant of efficacy and safety in schizophrenia drug therapy. Excessive D2RO (>80%) is known to cause catalepsy (CAT) in rats and extrapyramidal side effects (EPS) in human. The objective of this study was to use pharmacokinetic and pharmacodynamic modeling tools to relate CAT with D2RO in rats and to compare that with the relationship between D2RO and EPS in humans.

View Article and Find Full Text PDF

Physiologically based pharmacokinetic (PBPK) models provide a framework useful for generating credible human pharmacokinetic predictions from data available at the earliest, preclinical stages of pharmaceutical research. With this approach, the pharmacokinetic implications of in vitro data are contextualized via scaling according to independent physiological information. However, in many cases these models also require model-based estimation of additional empirical scaling factors (SFs) in order to accurately recapitulate known human pharmacokinetic behavior.

View Article and Find Full Text PDF

Objectives of the present investigation were: (1) to compare three literature reported tumor growth inhibition (TGI) pharmacodynamic (PD) models and propose an optimal new model that best describes the xenograft TGI data for antibody drug conjugates (ADC), (2) to translate efficacy of the ADC Trastuzumab-emtansine (T-DM1) from mice to patients using the optimized PD model, and (3) to apply the translational strategy to predict clinically efficacious concentrations of a novel in-house anti-5T4 ADC, A1mcMMAF. First, the performance of all four of the PD models (i.e.

View Article and Find Full Text PDF

The World Health Organization (WHO) International Programme on Chemical Safety (IPCS) Guidance on Characterization and Application of Physiologically Based Pharmacokinetic Models in Risk Assessment (IPCS, 2010) describes key principles for risk assessors and model developers. In the WHO Guidance, a template for model documentation was developed and a case study included. Here the WHO Guidance, including the template, is summarized and an additional case study is presented to illustrate its application, based upon an existing risk assessment for 2-butoxyethanol (CAS NO.

View Article and Find Full Text PDF

Introduction: Membrane transporters have been recognized to play a key role in determining the absorption, distribution and elimination processes of drugs. The organic anion-transporting polypeptide (OATP)1B1 and OATP1B3 isoforms are selectively expressed in the human liver and are known to cause significant drug-drug interactions (DDIs), as observed with an increasing number of drugs. It is evident that DDIs involving hepatic transporters are capable of altering systemic, as well as tissue-specific, exposure of drug substrates resulting in marked differences in drug safety and/or efficacy.

View Article and Find Full Text PDF

A systems-level mathematical model is presented that describes the effects of inhibiting the enzyme 5α-reductase (5aR) on the ventral prostate of the adult male rat under chronic administration of the 5aR inhibitor, finasteride. 5aR is essential for androgen regulation in males, both in normal conditions and disease states. The hormone kinetics and downstream effects on reproductive organs associated with perturbing androgen regulation are complex and not necessarily intuitive.

View Article and Find Full Text PDF

Background: Reducing brain β-amyloid (Aβ) via inhibition of β-secretase, or inhibition/modulation of γ-secretase, has been widely pursued as a potential disease-modifying treatment for Alzheimer's disease. Compounds that act through these mechanisms have been screened and characterized with Aβ lowering in the brain and/or cerebrospinal fluid (CSF) as the primary pharmacological end point. Interpretation and translation of the pharmacokinetic (PK)/pharmacodynamic (PD) relationship for these compounds is complicated by the relatively slow Aβ turnover process in these compartments.

View Article and Find Full Text PDF

The purpose of this paper is to evaluate the progress made by European cities in relation to Healthy Urban Planning (HUP) during Phase IV of the World Health Organization's Healthy Cities programme (2003-2008). The introduction sets out the general principle of HUP, identifying three levels or phases of health and planning integration. This leads on to a more specific analysis of the processes and substance of HUP, which provide criteria for assessment of progress.

View Article and Find Full Text PDF

To assess the feasibility of using sandwich-cultured human hepatocytes (SCHHs) as a model to characterize transport kinetics for in vivo pharmacokinetic prediction, the expression of organic anion-transporting polypeptide (OATP) proteins in SCHHs, along with biliary efflux transporters, was confirmed quantitatively by liquid chromatography-tandem mass spectrometry. Rifamycin SV (Rif SV), which was shown to completely block the function of OATP transporters, was selected as an inhibitor to assess the initial rates of active uptake. The optimized SCHH model was applied in a retrospective investigation of compounds with known clinically significant OATP-mediated uptake and was applied further to explore drug-drug interactions (DDIs).

View Article and Find Full Text PDF

With efforts to reduce cytochrome P450-mediated clearance (CL) during the early stages of drug discovery, transporter-mediated CL mechanisms are becoming more prevalent. However, the prediction of plasma concentration-time profiles for such compounds using physiologically based pharmacokinetic (PBPK) modeling is far less established in comparison with that for compounds with passively mediated pharmacokinetics (PK). In this study, we have assessed the predictability of human PK for seven organic anion-transporting polypeptide (OATP) substrates (pravastatin, cerivastatin, bosentan, fluvastatin, rosuvastatin, valsartan, and repaglinide) for which clinical intravenous data were available.

View Article and Find Full Text PDF

Background: Spatial planning affects the built environment, which in turn has the potential to have a significant impact on health, for good or ill. One way of ensuring that spatial plans take due account of health is through the inclusion of health considerations in the statutory and non statutory appraisal processes linked to plan-making processes.

Methods: A systematic review to identify evaluation studies of appraisals or assessments of plans where health issues were considered from 1987 to 2010.

View Article and Find Full Text PDF

Over the last two decades the impact on drug pharmacokinetics of the organic anion transporting polypeptides (OATPs: OATP-1B1, 1B3 and 2B1), expressed on the sinusoidal membrane of the hepatocyte, has been increasingly recognized. OATP-mediated uptake into the hepatocyte coupled with subsequent excretion into bile via efflux proteins, such as MRP2, is often referred to as hepatobiliary excretion. OATP transporter proteins can impact some drugs in several ways including pharmacokinetic variability, pharmacodynamic response and drug-drug interactions (DDIs).

View Article and Find Full Text PDF