The ADAMTS proteinases are a family of secreted, matrix-associated enzymes that have diverse roles in the regulation of tissue organization and vascular homeostasis. Several of the 19 human family members have been identified as having either tumor promoting or suppressing roles. We previously demonstrated that decreased ADAMTS15 expression correlated with a worse clinical outcome in mammary carcinoma (e.
View Article and Find Full Text PDFMatrix metalloproteinase 8 (MMP-8) is a tumor-suppressive protease that cleaves numerous substrates, including matrix proteins and chemokines. In particular, MMP-8 proteolytically activates IL-8 and, thereby, regulates neutrophil chemotaxis in vivo. We explored the effects of expression of either a WT or catalytically inactive (E198A) mutant version of MMP-8 in human breast cancer cell lines.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2012
High expression of the oncoprotein Myc has been linked to poor outcome in human tumors. Although MYC gene amplification and translocations have been observed, this can explain Myc overexpression in only a subset of human tumors. Myc expression is in part controlled by its protein stability, which can be regulated by phosphorylation at threonine 58 (T58) and serine 62 (S62).
View Article and Find Full Text PDFExpression of the c-Myc proto-oncoprotein is tightly regulated in normal cells. Phosphorylation at two conserved residues, threonine58 (T58) and serine62 (S62), regulates c-Myc protein stability. In cancer cells, c-Myc can become aberrantly stabilized associated with altered T58 and S62 phosphorylation.
View Article and Find Full Text PDFIn this study, the inhibitor 2 of protein phosphatase 2A (I2PP2A) was identified in vitro and in situ as a ceramide-binding protein, which exhibits stereoisomer specificity and fatty acid chain length preference. Site- directed mutagenesis coupled with structural details of I2PP2A suggested that VIK 207-209 residues localized on helix 7 are important for ceramide binding and single mutation of K209D altered this interaction. Notably, I2PP2A-ceramide binding decreased the association between PP2A and the inhibitor, preventing the inhibition of PP2A activity in vitro.
View Article and Find Full Text PDFLoss or inhibition of the serine/threonine protein phosphatase 2A (PP2A) has revealed a critical tumor suppressor function for PP2A. However, PP2A has also been shown to have important roles in cell cycle progression and survival. Therefore, PP2A is not a typical tumor suppressor.
View Article and Find Full Text PDFInhibition of protein phosphatase 2A (PP2A) activity has been identified as a prerequisite for the transformation of human cells. However, the molecular mechanisms by which PP2A activity is inhibited in human cancers are currently unclear. In this study, we describe a cellular inhibitor of PP2A with oncogenic activity.
View Article and Find Full Text PDFThe c-Myc oncoprotein promotes cell growth by enhancing ribosomal biogenesis through upregulation of RNA polymerases I-, II-, and III-dependent transcription. Overexpression of c-Myc and aberrant ribosomal biogenesis leads to deregulated cell growth and tumorigenesis. Hence, c-Myc activity and ribosomal biogenesis must be regulated in cells.
View Article and Find Full Text PDFProtein phosphatase 2A (PP2A) plays a prominent role in controlling accumulation of the proto-oncoprotein c-Myc. PP2A mediates its effects on c-Myc by dephosphorylating a conserved residue that normally stabilizes c-Myc, and in this way, PP2A enhances c-Myc ubiquitin-mediated degradation. Stringent regulation of c-Myc levels is essential for normal cell function, as c-Myc overexpression can lead to cell transformation.
View Article and Find Full Text PDFThe stability of c-Myc is regulated by multiple Ras effector pathways. Phosphorylation at Ser 62 stabilizes c-Myc, whereas subsequent phosphorylation at Thr 58 is required for its degradation. Here we show that Ser 62 is dephosphorylated by protein phosphatase 2A (PP2A) before ubiquitination of c-Myc, and that PP2A activity is regulated by the Pin1 prolyl isomerase.
View Article and Find Full Text PDFObjectives: A subset of prostate carcinomas is composed predominantly, even exclusively, of neuroendocrine (NE) cells. In this report, we sought to characterize the gene expression profile of a prostate small cell NE carcinoma by assessing the diversity and abundance of transcripts in the LuCaP 49 prostate small cell carcinoma xenograft.
Methods: We constructed a cDNA library (PRCA3) from the LuCap 49 prostate small cell xenograft.
Proc Natl Acad Sci U S A
September 2002
The human prostate gland is an important target organ of androgenic hormones. Testosterone and dihydrotestosterone interact with the androgen receptor to regulate vital aspects of prostate growth and function including cellular proliferation, differentiation, apoptosis, metabolism, and secretory activity. Our objective in this study was to characterize the temporal program of transcription that reflects the cellular response to androgens and to identify specific androgen-regulated genes (ARGs) or gene networks that participate in these responses.
View Article and Find Full Text PDFClinical trials of the herbal preparation PC-SPES have demonstrated substantial responses in patients with advanced prostate cancer. Biochemical assays and clinical observations suggest that the effects of PC-SPES are mediated at least in part through estrogenic activity, although the mechanism(s) remains largely undefined. In this study, we used cDNA microarray analysis to identify gene expression changes in LNCaP prostate carcinoma cells exposed to PC-SPES and estrogenic agents including diethylstilbestrol.
View Article and Find Full Text PDFJ Steroid Biochem Mol Biol
January 2002
The androgen receptor (AR) and cognate ligands regulate vital aspects of prostate cellular growth and function including proliferation, differentiation, apoptosis, lipid metabolism, and secretory action. In addition, the AR pathway also influences pathological processes of the prostate such as benign prostatic hypertrophy and prostate carcinogenesis. The pivotal role of androgens and the AR in prostate biology prompted this study with the objective of identifying molecular mediators of androgen action.
View Article and Find Full Text PDF