Publications by authors named "Huggins D"

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The rapid development of highly effective vaccines against SARS-CoV-2 has altered the trajectory of the pandemic, and antiviral therapeutics have further reduced the number of COVID-19 hospitalizations and deaths. Coronaviruses are enveloped, positive-sense, single-stranded RNA viruses that encode various structural and non-structural proteins, including those critical for viral RNA replication and evasion from innate immunity.

View Article and Find Full Text PDF

Dryland agriculture in the Inland Pacific Northwest is challenged in part by rising input costs for seed, fertilizer, and agrichemicals; threats to water quality and soil health, including soil erosion, organic matter decline, acidification, compaction, and nutrient imbalances; lack of cropping system diversity; herbicide resistance; and air quality concerns from atmospheric emissions of particulate matter and greenhouse gases. Technological advances such as rapid data acquisition, artificial intelligence, cloud computing, and robotics have helped fuel innovation and discovery but have also further complicated agricultural decision-making and research. Meeting these challenges has promoted interest in (1) supporting long-term research that enables assessment of ecosystem service trade-offs and advances sustainable and regenerative approaches to agriculture, and (2) developing coproduction research approaches that actively engage decision-makers and accelerate innovation.

View Article and Find Full Text PDF
Article Synopsis
  • - Long-term research in agroecosystems is crucial for balancing increased agricultural production with environmental sustainability and social acceptance, requiring collaboration among various stakeholders.
  • - The LTAR network's "Common Experiment" aims to produce multi-region scientific data to support innovative, sustainable agricultural practices while enhancing food security and environmental resilience.
  • - This experiment contrasts different agricultural production systems and adapts treatments through stakeholder input, though site-specific challenges may hinder uniform implementation and engagement.
View Article and Find Full Text PDF

Purpose: To assess the efficacy and safety of goniotomy using a uniquely shaped trapezoidal, serrated dual blade (TDB), designed to accommodate variability in patient anatomy, in reducing intraocular pressure (IOP) or anti-glaucoma medications (AGM) in adult glaucoma patients when combined with cataract surgery.

Patients And Methods: Retrospective consecutive case series of patients with glaucoma who underwent phacoemulsification with TDB-goniotomy were included. Preoperative, intraoperative, and postoperative data were collected over 6 months.

View Article and Find Full Text PDF

Absolute binding free energy (ABFE) calculations with all-atom molecular dynamics (MD) have the potential to greatly reduce costs in the first stages of drug discovery. Here, we introduce BAT2, the new version of the Binding Affinity Tool (BAT.py), designed to combine full automation of ABFE calculations with high-performance MD simulations, making it a potential tool for virtual screening.

View Article and Find Full Text PDF

Tuberculosis remains a leading cause of death from a single infection worldwide. Drug resistance to existing and even new antimycobacterials calls for research into novel targets and unexplored mechanisms of action. Recently we reported on the development of tight-binding inhibitors of Mycobacterium tuberculosis (Mtb) lipoamide dehydrogenase (Lpd), which selectively inhibit the bacterial but not the human enzyme based on a differential modality of inhibitor interaction with these targets.

View Article and Find Full Text PDF

Background: Female Aedes aegypti mosquitoes can spread disease-causing pathogens when they bite humans to obtain blood nutrients required for egg production. Following a complete blood meal, host-seeking is suppressed until eggs are laid. Neuropeptide Y-like receptor 7 (NPYLR7) plays a role in endogenous host-seeking suppression and previous work identified small-molecule NPYLR7 agonists that inhibit host-seeking and blood-feeding when fed to mosquitoes at high micromolar doses.

View Article and Find Full Text PDF

Background: Diagnosis of visceral leishmaniasis (VL) in resource-limited endemic regions is currently based on serological testing with rK39 immunochromatographic tests (ICTs). However, rK39 ICT frequently has suboptimal diagnostic accuracy. Furthermore, treatment monitoring and detection of VL relapses is reliant on insensitive and highly invasive tissue aspirate microscopy.

View Article and Find Full Text PDF

Eleven-nineteen leukemia (ENL) is an epigenetic reader protein that drives oncogenic transcriptional programs in acute myeloid leukemia (AML). AML is one of the deadliest hematopoietic malignancies, with an overall 5-year survival rate of 27%. The epigenetic reader activity of ENL is mediated by its YEATS domain that binds to acetyl and crotonyl marks on histone tails and colocalizes with promoters of actively transcribed genes that are essential for leukemia.

View Article and Find Full Text PDF

The metabolic activity of soil microbiomes plays a central role in carbon and nitrogen cycling. Given the changing climate, it is important to understand how the metabolism of natural communities responds to environmental change. However, the ecological, spatial, and chemical complexity of soils makes understanding the mechanisms governing the response of these communities to perturbations challenging.

View Article and Find Full Text PDF

Female mosquitoes can spread disease-causing pathogens when they bite humans to obtain blood nutrients required for egg production. Following a complete blood meal, host-seeking is suppressed until eggs are laid. Neuropeptide Y-like Receptor 7 (NPYLR7) plays a role in endogenous host-seeking suppression and previous work identified small molecule NPYLR7 agonists that suppress host-seeking and blood feeding when fed to mosquitoes at high micromolar doses.

View Article and Find Full Text PDF

Lpd (lipoamide dehydrogenase) in (Mtb) is required for virulence and is a genetically validated tuberculosis (TB) target. Numerous screens have been performed over the last decade, yet only two inhibitor series have been identified. Recent advances in large-scale virtual screening methods combined with make-on-demand compound libraries have shown the potential for finding novel hits.

View Article and Find Full Text PDF

Helicases, classified into six superfamilies, are mechanoenzymes that utilize energy derived from ATP hydrolysis to remodel DNA and RNA substrates. These enzymes have key roles in diverse cellular processes, such as translation, ribosome assembly, and genome maintenance. Helicases with essential functions in certain cancer cells have been identified, and helicases expressed by many viruses are required for their pathogenicity.

View Article and Find Full Text PDF

Helicases, classified into six superfamilies, are mechanoenzymes that utilize energy derived from ATP hydrolysis to remodel DNA and RNA substrates. These enzymes have key roles in diverse cellular processes, such as genome replication and maintenance, ribosome assembly and translation. Helicases with essential functions only in certain cancer cells have been identified and helicases expressed by certain viruses are required for their pathogenicity.

View Article and Find Full Text PDF

In the hit identification stage of drug discovery, a diverse chemical space needs to be explored to identify initial hits. Contrary to empirical scoring functions, absolute protein-ligand binding free-energy perturbation (ABFEP) provides a theoretically more rigorous and accurate description of protein-ligand binding thermodynamics and could, in principle, greatly improve the hit rates in virtual screening. In this work, we describe an implementation of an accurate and reliable ABFEP method in FEP+.

View Article and Find Full Text PDF

Free energy perturbation is a computational technique that can be used to predict how small changes to an inhibitor structure will affect the binding free energy to its target. In this paper, we describe the utility of free energy perturbation with FEP+ in the hit-to-lead stage of a drug discovery project targeting soluble adenyl cyclase. The project was structurally enabled by X-ray crystallography throughout.

View Article and Find Full Text PDF

Nearly half of all pregnancies are unintended; thus, existing family planning options are inadequate. For men, the only choices are condoms and vasectomy, and most current efforts to develop new contraceptives for men impact sperm development, meaning that contraception requires months of continuous pretreatment. Here, we provide proof-of-concept for an innovative strategy for on-demand contraception, where a man would take a birth control pill shortly before sex, only as needed.

View Article and Find Full Text PDF

Soluble adenylyl cyclase (sAC: ADCY10) is an enzyme involved in intracellular signaling. Inhibition of sAC has potential therapeutic utility in a number of areas. For example, sAC is integral to successful male fertility: sAC activation is required for sperm motility and ability to undergo the acrosome reaction, two processes central to oocyte fertilization.

View Article and Find Full Text PDF

Software for accurate prediction of protein-ligand binding affinity can be a key enabling tool for small molecule drug discovery. Free energy perturbation (FEP) is a computational technique that can be used to compute binding affinity differences between molecules in a congeneric series. It has shown promise in reliably generating accurate predictions and is now widely used in the pharmaceutical industry.

View Article and Find Full Text PDF

Unlabelled: The chromatin reader eleven-nineteen leukemia (ENL) has been identified as a critical dependency in acute myeloid leukemia (AML), but its therapeutic potential remains unclear. We describe a potent and orally bioavailable small-molecule inhibitor of ENL, TDI-11055, which displaces ENL from chromatin by blocking its YEATS domain interaction with acylated histones. Cell lines and primary patient samples carrying MLL rearrangements or NPM1 mutations are responsive to TDI-11055.

View Article and Find Full Text PDF

The Hippo signaling pathway acts as a brake on regeneration in many tissues. This cascade of kinases culminates in the phosphorylation of the transcriptional cofactors Yap and Taz, whose concentration in the nucleus consequently remains low. Various types of cellular signals can reduce phosphorylation, however, resulting in the accumulation of Yap and Taz in the nucleus and subsequently in mitosis.

View Article and Find Full Text PDF

Aberrant gene-silencing through dysregulation of polycomb protein activity has emerged as an important oncogenic mechanism in cancer, implicating polycomb proteins as important therapeutic targets. Recently, an inhibitor targeting EZH2, the methyltransferase component of PRC2, received U.S.

View Article and Find Full Text PDF