In this work, we report a straightforward leaching strategy to achieve rapid structure self-reconstruction of NiRu-OH/NF. The as-prepared electrode shows excellent OER performance with a low overpotential of 321 mV at 100 mA cm. It can deliver 10 mA cm at 1.
View Article and Find Full Text PDFSorafenib, a first-line drug for advanced hepatocellular carcinoma (HCC), unfortunately encounters resistance in most patients, leading to disease progression. Traditional approaches to counteract this resistance, particularly those targeting the RAF-MEK-ERK pathway, often face clinical feasibility limitations. Magnetic hyperthermia (MH), unlike conventional thermal therapies, emerges as a promising alternative.
View Article and Find Full Text PDFIndoleamine 2,3-dioxygenase (IDO), highly expressed in hepatocellular carcinoma (HCC), plays a pivotal role in creating an immune-suppressive tumor microenvironment. Inhibiting IDO activity has emerged as a promising immunotherapeutic strategy; however, the delivery of IDO inhibitors to the tumor site is constrained, limiting their therapeutic efficacy. In this study, we developed a magnetic vortex nanodelivery system for the targeted delivery of the IDO inhibitor NLG919, integrated with magnetic hyperthermia therapy to reverse the immune-suppressive microenvironment of liver cancer and inhibit tumor growth.
View Article and Find Full Text PDFMagnetothermodynamic (MTD) therapy can activate antitumor immune responses by inducing potent immunogenic tumor cell death. However, tumor development is often accompanied by multifarious immunosuppressive mechanisms that can counter the efficacy of immunogenic MTD therapy. High-mobility group protein A1 (HMGA1) is overexpressed within hepatocellular carcinoma tissues and plays a crucial function in the generation of immunosuppressive effects.
View Article and Find Full Text PDFJ Nanobiotechnology
December 2022
Cancer immunotherapy has shown promising therapeutic results in the clinic, albeit only in a limited number of cancer types, and its efficacy remains less than satisfactory. Nanoparticle-based approaches have been shown to increase the response to immunotherapies to address this limitation. In particular, magnetic nanoparticles (MNPs) as a powerful manipulator are an appealing option for comprehensively regulating the immune system in vivo due to their unique magnetically responsive properties and high biocompatibility.
View Article and Find Full Text PDFBased on the water quality test data of 257 groups of phreatic groundwater and 165 groups of confined groundwater in the Nanchang area and the redox conditions, acid-base conditions and the organic matter content in groundwater, we identified hydrochemical characteristics and genesis of groundwater with high Fe and Mn contents in Nanchang. The results showed that Fe and Mn exceeded the standard in both phreatic and confined groundwater. The over-standard rates of Fe and Mn in groundwater were 8.
View Article and Find Full Text PDFControversy exists to quantify the fate and speciation of Arsenic (As). We investigated its characteristics by As-containing algae in various pH hydrothermal liquefaction (HTL) system, specifically via two classical methods, i.e.
View Article and Find Full Text PDFImmunogenic cell death (ICD) can improve the therapeutic effects of cancer immunotherapy by initiating adaptive immune responses. Unlike the exogenous hyperthermia modality in clinics, magnetic hyperthermia (MH) is characterized by an iron oxide nano-agent acting as a heating source and the effects induced by heating acting at the intracellular region. However, the immunological effects of endogenous heating generated during MH and exogenous heating, and the difference in damage-associated molecular pattern (DAMP) emissions correlating with the ICD are unclear; whether MH elicits genuine ICD remains unknown.
View Article and Find Full Text PDFArsenic (As) is one of notorious metalloids due to its high toxicity to human beings and ecological system. Understanding its fate and speciation transformation mechanism during hydrothermal liquefaction (HTL) of microalgae is of crucial importance for the application of its HTL products. 80.
View Article and Find Full Text PDFCu is one of the dominant heavy metals toxic to human health and environmental ecosystems. Understanding its fate and chemical speciation is of great importance for hydrothermal liquefaction (HTL) of Cu-rich hazardous streams. Herein, we investigated its evolution during the HTL of wastewater algae through ICP-MS, XRD, XANES, and EXAFS.
View Article and Find Full Text PDFCoupling algae growth on wastewater with hydrothermal liquefaction (HTL) is regarded as an environment-enhancing pathway for wastewater management, biomass amplification, sustainable energy generation and value-added products generation. Through this integrated pathway, microalgae can not only recover nitrogen and phosphorus, but also absorb heavy metals from the wastewater. The migration and transformation of heavy metals need to be specifically assessed and considered due to the environmental concerns associated with metal toxicity.
View Article and Find Full Text PDFMicroalgae can not only purify and recover the nutrients from wastewater, but also be harvested as wet biomass for the production of biocrude oil via hydrothermal liquefaction (HTL). Chlorella sp. cultivated in the ultrafiltration (UF) membrane treated anaerobic digestion (AD) liquid digestate of chicken manure was used as the feedstock in this study.
View Article and Find Full Text PDF