Due to the emergency environment pollution problems, it is imperative to understand the air quality and take effective measures for environmental governance. As a representative measure, the air quality index (AQI) is a single conceptual index value simplified by the concentrations of several routinely monitored air pollutants according to the proportion of various components in the air. With the gradual enhancement of awareness of environmental protection, air quality index forecasting is a key point of environment management.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
September 2021
Air pollution greatly reduces the visibility of the air, leading to frequent traffic accidents (TA), and the resulting economic losses cannot be ignored. In order to better control and mitigate the traffic accident economic losses of air pollution, this paper proposes a novel assessment and forecasting system for TA economic loss of air pollution, which contains assessment module and forecasting module. In the assessment module, a reasonable assessment of TA economic loss is provided which also analyzes the efficiency of air pollution control based on data envelope analysis directional distance function.
View Article and Find Full Text PDFOwing to the high nonlinearity and noise in the air quality index (AQI), tackling the uncertainties and fuzziness in the forecasting process is still a prevalent problem. Therefore, this study developed an intelligent hybrid air-quality forecasting system based on feature selection and a modified evolving interval type-2 quantum fuzzy neural network (eIT2QFNN), which provides accurate air-quality forecasting information by considering climate influencing factors. The main contributions of this study are as follows.
View Article and Find Full Text PDF