Background: Gene set analysis (GSA) aims to evaluate the association between the expression of biological pathways, or a priori defined gene sets, and a particular phenotype. Numerous GSA methods have been proposed to assess the enrichment of sets of genes. However, most methods are developed with respect to a specific alternative scenario, such as a differential mean pattern or a differential coexpression.
View Article and Find Full Text PDFBackground: A biomarker is usually used as a diagnostic or assessment tool in medical research. Finding an ideal biomarker is not easy and combining multiple biomarkers provides a promising alternative. Moreover, some biomarkers based on the optimal linear combination do not have enough discriminatory power.
View Article and Find Full Text PDFIn DNA microarray studies, gene-set analysis (GSA) has become the focus of gene expression data analysis. GSA utilizes the gene expression profiles of functionally related gene sets in Gene Ontology (GO) categories or priori-defined biological classes to assess the significance of gene sets associated with clinical outcomes or phenotypes. Many statistical approaches have been proposed to determine whether such functionally related gene sets express differentially (enrichment and/or deletion) in variations of phenotypes.
View Article and Find Full Text PDFCase-control sampling is popular in epidemiological research because of its cost and time saving. In a logistic regression model, with limited knowledge on the covariance matrix of the point estimator of the regression coefficients a priori, there exists no fixed sample size analysis. In this study, we propose a two-stage sequential analysis, in which the optimal sample fraction and the required sample size to achieve a predetermined volume of a joint confidence set are estimated in an interim analysis.
View Article and Find Full Text PDFBackground: Before conducting a microarray experiment, one important issue that needs to be determined is the number of arrays required in order to have adequate power to identify differentially expressed genes. This paper discusses some crucial issues in the problem formulation, parameter specifications, and approaches that are commonly proposed for sample size estimation in microarray experiments. Common methods for sample size estimation are formulated as the minimum sample size necessary to achieve a specified sensitivity (proportion of detected truly differentially expressed genes) on average at a specified false discovery rate (FDR) level and specified expected proportion (pi1) of the true differentially expression genes in the array.
View Article and Find Full Text PDFJ Biopharm Stat
November 2008
An important objective in mass spectrometry (MS) is to identify a set of biomarkers that can be used to potentially distinguish patients between distinct treatments (or conditions) from tens or hundreds of spectra. A common two-step approach involving peak extraction and quantification is employed to identify the features of scientific interest. The selected features are then used for further investigation to understand underlying biological mechanism of individual protein or for development of genomic biomarkers to early diagnosis.
View Article and Find Full Text PDFBackground: Many researchers are concerned with the comparability and reliability of microarray gene expression data. Recent completion of the MicroArray Quality Control (MAQC) project provides a unique opportunity to assess reproducibility across multiple sites and the comparability across multiple platforms. The MAQC analysis presented for the conclusion of inter- and intra-platform comparability/reproducibility of microarray gene expression measurements is inadequate.
View Article and Find Full Text PDFJ Biopharm Stat
August 2004
Microarray technology allows the measurement of expression levels of a large number of genes simultaneously. There are inherent biases in microarray data generated from an experiment. Various statistical methods have been proposed for data normalization and data analysis.
View Article and Find Full Text PDFTesting for significance with gene expression data from DNA microarray experiments involves simultaneous comparisons of hundreds or thousands of genes. If R denotes the number of rejections (declared significant genes) and V denotes the number of false rejections, then V/R, if R > 0, is the proportion of false rejected hypotheses. This paper proposes a model for the distribution of the number of rejections and the conditional distribution of V given R, V / R.
View Article and Find Full Text PDFMotivation: A microarray experiment is a multi-step process, and each step is a potential source of variation. There are two major sources of variation: biological variation and technical variation. This study presents a variance-components approach to investigating animal-to-animal, between-array, within-array and day-to-day variations for two data sets.
View Article and Find Full Text PDFWhen a large number of statistical tests is performed, the chance of false positive findings could increase considerably. The traditional approach is to control the probability of rejecting at least one true null hypothesis, the familywise error rate (FWE). To improve the power of detecting treatment differences, an alternative approach is to control the expected proportion of errors among the rejected hypotheses, the false discovery rate (FDR).
View Article and Find Full Text PDFAssessment of therapeutic equivalence or non-inferiority between two medical diagnostic procedures often involves comparisons of the response rates between paired binary endpoints. The commonly used and accepted approach to assessing equivalence is by comparing the asymptotic confidence interval on the difference of two response rates with some clinical meaningful equivalence limits. This paper investigates two asymptotic test statistics, a Wald-type (sample-based) test statistic and a restricted maximum likelihood estimation (RMLE-based) test statistic, to assess equivalence or non-inferiority based on paired binary endpoints.
View Article and Find Full Text PDF