Osteoporosis disrupts the fine-tuned balance between bone formation and resorption, leading to reductions in bone quantity and quality and ultimately increasing fracture risk. Prevention and treatment of osteoporotic fractures is essential for reductions in mortality, morbidity, and the economic burden, particularly considering the aging global population. Extreme bone loss that mimics time-accelerated osteoporosis develops in the paralyzed limbs following complete spinal cord injury (SCI).
View Article and Find Full Text PDFBisphosphonates prevent bone loss in glucocorticoid (GC)-treated boys with Duchenne muscular dystrophy (DMD) and are recommended as standard of care. Targeting receptor activator of nuclear factor kappa-B ligand (RANKL) may have advantages in DMD by ameliorating dystrophic skeletal muscle function in addition to their bone anti-resorptive properties. However, the potential effects of anti-RANKL treatment upon discontinuation in GC-induced animal models of DMD are unknown and need further investigation prior to exploration in the clinical research setting.
View Article and Find Full Text PDFObjective: IĸB protein B cell lymphoma 3-encoded protein (BCL3) is a regulator of the NF-κB family of transcription factors. NF-κB signaling fundamentally influences the fate of bone-forming osteoblasts and bone-resorbing osteoclasts, but the role of BCL3 in bone biology has not been investigated. The objective of this study was to evaluate BCL3 in skeletal development, maintenance, and osteoarthritic pathology.
View Article and Find Full Text PDFFront Physiol
December 2022
Exercise is recommended as a non-pharmacological therapy for osteoarthritis (OA). Various exercise regimes, with differing intensities and duration, have been used in a range of OA rodent models. These studies show gentle or moderate exercise reduces the severity of OA parameters while high intensity load bearing exercise is detrimental.
View Article and Find Full Text PDFIncreasing interest has focussed on the possible role of alterations in the microbiome in the pathogenesis of metabolic disease, inflammatory disease, and osteoporosis. Here we examined the role of the microbiome in a preclinical model of osteoarthritis in mice subjected to destabilisation of medical meniscus (DMM). The intestinal microbiome was depleted by broad-spectrum antibiotics from 1 week before birth until the age of 6 weeks when mice were subjected reconstitution of the microbiome with faecal microbial transplant (FMT) followed by the administration of a mixture of probiotic strains Lacticaseibacillus paracasei 8700:2, Lactiplantibacillus plantarum HEAL9 and L.
View Article and Find Full Text PDFOsteoarthritis is the most prevalent musculoskeletal disease in people over 45, leading to an increasing economic and societal cost. Animal models are used to mimic many aspects of the disease. The present protocol describes the destabilization and cartilage scratch model (DCS) of post-traumatic osteoarthritis.
View Article and Find Full Text PDFJ Musculoskelet Neuronal Interact
June 2022
Objective: Characterise the spatiotemporal responses of trabecular and cortical bone to complete spinal cord injury (SCI) in the skeletally mature rat in the acute (4-week) period following injury.
Methods: The spinal cord of 5-month old male rats was transected at the T9 level. Outcome measures were assessed using micro-computed tomography, three-point bending and serum markers at 1-, 2-, and 4-weeks post-transection.
Aims: Osteoarthritis (OA) is the most prevalent systemic musculoskeletal disorder, characterized by articular cartilage degeneration and subchondral bone (SCB) sclerosis. Here, we sought to examine the contribution of accelerated growth to OA development using a murine model of excessive longitudinal growth. Suppressor of cytokine signalling 2 (SOCS2) is a negative regulator of growth hormone (GH) signalling, thus mice deficient in SOCS2 ( ) display accelerated bone growth.
View Article and Find Full Text PDFBackground: The classical functions of the skeleton encompass locomotion, protection and mineral homeostasis. However, cell-specific gene deletions in the mouse and human genetic studies have identified the skeleton as a key endocrine regulator of metabolism. The bone-specific phosphatase, Phosphatase, Orphan 1 (PHOSPHO1), which is indispensable for bone mineralisation, has been recently implicated in the regulation of energy metabolism in humans, but its role in systemic metabolism remains unclear.
View Article and Find Full Text PDFOsteoarthritis Cartilage
December 2019
Objective: Joint injury involving destabilisation of the joint and damage to the articular cartilage (e.g., sports-related injury) can result in accelerated post-traumatic osteoarthritis (PTOA).
View Article and Find Full Text PDFPurpose Of Review: Periodontitis is the inflammation-associated bone loss disease of the alveolar bone that surrounds teeth. Classically, the emphasis on the etiology of periodontitis has been on the products of periodontal pathogens that lead to an inflammatory response of the soft tissues of the periodontium, eventually leading to activation of osteoclasts that degrade the alveolar bone. Until recently, the response of osteocytes that populate the alveolar bone, and that are known for their regulatory role in bone anabolism and catabolism, has not been addressed.
View Article and Find Full Text PDFThis chapter describes the surgical procedure for destabilization of medial meniscus in mice. Details on subsequent microCT and histological analysis are also provided, as well as details on osteoarthritis evaluation.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
May 2018
Protease-activated receptor-2 (PAR2) is one member of a small family of transmembrane, G-protein-coupled receptors. These receptors are activated cleavage of their N terminus by serine proteases (e.g.
View Article and Find Full Text PDFCartilage destruction is a key characteristic of arthritic disease, a process now widely established to be mediated by metzincins such as MMPs. Despite showing promise in preclinical trials during the 1990s, MMP inhibitors for the blockade of extracellular matrix turnover in the treatment of cancer and arthritis failed clinically, primarily due to poor selectivity for target MMPs. In recent years, roles for serine proteinases in the proteolytic cascades leading to cartilage destruction have become increasingly apparent, renewing interest in the potential for new therapeutic strategies that utilize pharmacological inhibitors against this class of proteinases.
View Article and Find Full Text PDFObjective: Proteinase-activated receptor 2 (PAR2) deficiency protects against cartilage degradation in experimental osteoarthritis (OA). The wider impact of this pathway upon OA-associated pathologies such as osteophyte formation and pain is unknown. Herein, we investigated early temporal bone and cartilage changes in experimental OA in order to further elucidate the role of PAR2 in OA pathogenesis.
View Article and Find Full Text PDFPhosphatases are recognised to have important functions in the initiation of skeletal mineralization. Tissue-nonspecific alkaline phosphatase (TNAP) and PHOSPHO1 are indispensable for bone and cartilage mineralization but their functional relationship in the mineralization process remains unclear. In this study, we have used osteoblast and metatarsal cultures to obtain biochemical evidence for co-operativity and cross-talk between PHOSPHO1 and TNAP in the initiation of mineralization.
View Article and Find Full Text PDFGeneralized arterial calcification of infancy (GACI) is an autosomal recessive disorder of spontaneous infantile arterial and periarticular calcification which is attributed to mutations in the ectonucleotide pyrophosphatase/phosphodiesterase 1 (Enpp1) gene. Whilst the bisphosphonate, etidronate, is currently used off-label for the treatment for GACI, recent studies have highlighted its detrimental effects on bone mineralisation. In the present study, we used the Enpp1-/- mouse model of GACI to examine the effects of etidronate treatment (100 µg/kg), on vascular and skeletal calcification.
View Article and Find Full Text PDFThe emergence of bone as an endocrine regulator has prompted a re-evaluation of the role of bone mineralization factors in the development of metabolic disease. Ectonucleotide pyrophosphatase/phosphodiesterase-1 (NPP1) controls bone mineralization through the generation of pyrophosphate, and levels of NPP1 are elevated both in dermal fibroblast cultures and muscle of individuals with insulin resistance. We investigated the metabolic phenotype associated with impaired bone metabolism in mice lacking the gene that encodes NPP1 (Enpp1(-/-) mice).
View Article and Find Full Text PDFEcto-nucleotide pyrophosphatase/phosphodiesterases (NPPs) hydrolyse nucleotide triphosphates to the corresponding nucleotide monophosphates and the mineralisation inhibitor, pyrophosphate (PPi). This study examined the role of NPP1 in osteocytes, osteoclasts and cortical bone, using a mouse model lacking NPP1 (Enpp1(-/-)). We used microcomputed tomography (μCT) to investigate how NPP1 deletion affects cortical bone structure; excised humerus bones from 8, 15 and 22-week old mice were scanned at 0.
View Article and Find Full Text PDFThe in vitro culture of calvarial osteoblasts from neonatal rodents remains an important method for studying the regulation of bone formation. The widespread use of transgenic mice has created a particular need for a reliable, simple method that allows the differentiation and bone‑forming activity of murine osteoblasts to be studied. In the present study, we established such a method and identified key differences in optimal culture conditions between mouse and rat osteoblasts.
View Article and Find Full Text PDFThe suppressor of cytokine signalling (Socs2(-/-))-knockout mouse is characterised by an overgrowth phenotype due to enhanced GH signalling. The objective of this study was to define the Socs2(-/-) bone phenotype and determine whether GH promotes bone mass via IGF1-dependent mechanisms. Despite no elevation in systemic IGF1 levels, increased body weight in 4-week-old Socs2(-/-) mice following GH treatment was associated with increased cortical bone area (Ct.
View Article and Find Full Text PDFPHOSPHO1 and tissue-nonspecific alkaline phosphatase (TNAP) have nonredundant functions during skeletal mineralization. Although TNAP deficiency (Alpl(-/-) mice) leads to hypophosphatasia, caused by accumulation of the mineralization inhibitor inorganic pyrophosphate (PPi ), comparably elevated levels of PPi in Phospho1(-/-) mice do not explain their stunted growth, spontaneous fractures, bowed long bones, osteomalacia, and scoliosis. We have previously shown that elevated PPi in Alpl(-/-) mice is accompanied by elevated osteopontin (OPN), another potent mineralization inhibitor, and that the amount of OPN correlates with the severity of hypophosphatasia in mice.
View Article and Find Full Text PDFObjective: To assess the role of glycogen synthase kinase 3 (GSK-3) as a regulator of cartilage destruction in human tissue and a murine model of osteoarthritis (OA).
Methods: Surgical destabilization of the medial meniscus (DMM) was performed to induce experimental murine OA, and joint damage was assessed histologically. Bovine nasal and human OA cartilage samples were incubated with interleukin-1 (IL-1) plus oncostatin M (OSM) and GSK-3 inhibitor.
To gain a better understanding of the mechanisms that underpin aortic calcification, rodent models have been previously utilised. Regions of calcium and phosphate deposition are commonly visualised using labor-intensive two-dimensional histomorphometric techniques. In this study, we developed a novel micro-computed tomography (µCT) imaging protocol to quantify calcification in vascular tissues using high resolution three-dimensional (3D) reconstructions of aortae derived from the well-established Ecto-nucleotide pyrophosphatase/phosphodiesterase-1 knockout (Enpp1-/-) mouse model of medial aortic calcification.
View Article and Find Full Text PDF