Chk1 is a serine/threonine kinase that plays several important roles in the cellular response to genotoxic stress. Since many current standard-of-care therapies for human cancer directly damage DNA or inhibit DNA synthesis, there is interest in using small molecule inhibitors of Chk1 to potentiate their clinical activity. Additionally, Chk1 is known to be critically involved in cell cycle progression of unperturbed cells.
View Article and Find Full Text PDFInhibition of the checkpoint kinase Chk1, both as a monotherapy and in combination with DNA damaging cytotoxics, is a promising therapeutic approach for the treatment of a wide array of human cancers. However, much remains to be elucidated in regard to the patient populations that will respond best to a Chk1 inhibitor and the optimal therapeutics to combine with a Chk1 inhibitor. In an effort to discover sensitizing mutations and novel combination strategies for Chk1 inhibition, an siRNA screen was performed in combination with the selective Chk1 inhibitor AR458323.
View Article and Find Full Text PDFA series of diacylethylenediamine derivatives were synthesized and evaluated for their inhibitory activity against DGAT-1 and pharmacokinetic profile to discover new small molecule DGAT-1 inhibitors. Among the compounds, N-[2-({[1-phenyl-3-(trifluoromethyl)-1H-pyrazol-4-yl]carbonyl}amino)ethyl]-6-(2,2,2-trifluoroethoxy)pyridine-3-carboxamide 3x showed potent inhibitory activity and excellent PK profile. Oral administration of 3x to mice with dietary-induced obesity resulted in reduced body weight gain and white adipose tissue weight.
View Article and Find Full Text PDFTumor cells extensively utilize the pentose phosphate pathway for the synthesis of ribose. Transketolase is a key enzyme in this pathway and has been suggested as a target for inhibition in the treatment of cancer. In a pharmacodynamic study, nude mice with xenografted HCT-116 tumors were dosed with 1 ('N3'-pyridyl thiamine'; 3-(6-methyl-2-amino-pyridin-3-ylmethyl)-5-(2-hydroxy-ethyl)-4-methyl-thiazol-3-ium chloride hydrochloride), an analog of thiamine, the co-factor of transketolase.
View Article and Find Full Text PDFBioorg Med Chem Lett
January 2008
Inhibition of the thiamine-utilizing enzyme transketolase (TK) has been linked with diminished tumor cell proliferation. Most thiamine antagonists have a permanent positive charge on the B-ring, and it has been suggested that this charge is required for diphosphorylation by thiamine pyrophosphokinase (TPPK) and binding to TK. We sought to make neutral thiazolium replacements that would be substrates for TPPK, while not necessarily needing thiamine transporters (ThTr1 and ThTr2) for cell penetration.
View Article and Find Full Text PDFBioorg Med Chem Lett
January 2008
Transketolase, a key enzyme in the pentose phosphate pathway, has been suggested as a target for inhibition in the treatment of cancer. Compound 5a ('N3'-pyridyl thiamine'; 3-(6-methyl-2-amino-pyridin-3-ylmethyl)-5-(2-hydroxy-ethyl)-4-methyl-thiazol-3-ium chloride hydrochloride), an analog of the transketolase cofactor thiamine, is a potent transketolase inhibitor but suffers from poor pharmacokinetics due to high clearance and C(max) linked toxicity. An efficient way of improving the pharmacokinetic profile of 5a is to prepare oxidized prodrugs which are slowly reduced in vivo yielding longer, sustained blood levels of the drug.
View Article and Find Full Text PDFA series of new acetogenin analogues incorporating a central catechol moiety instead of the tetrahydrofuran ring(s) have been prepared and tested against L1210 leukemia cells. Although less potent than bullatacinone, which has the same terminal lactone, these compounds display interesting cell cycle effects.
View Article and Find Full Text PDFThe stereo- and enantiocontrolled synthesis of substituted beta-hydroxy ethers based on glycol and catechol bearing an alkyne group and a series of substituents is reported. These substrates were designed to mimic the bis-THF array of annonaceous acetogenins and to provide an access to simplified and modified analogues. The key steps of the synthesis involve the condensation of the nonracemic mesylate of solketal with ethylene glycol and catechol, followed by an alkylation with a glycidyl derivative.
View Article and Find Full Text PDFSamarium(II) iodide was used to access eight-, nine-, and ten-membered carbocycles via a domino reaction composed of a cyclization/fragmentation process. 2-(Iodoalkyl)-, 2-(iodomethyl)allyl-, and 2-(2-iodomethyl)benzyl-2-methyl-3-(methanesulfonyloxy)cycloalkanones were subjected to Barbier-type reductive coupling conditions. Intermediate cycloalkanedione derivatives were also treated under similar conditions, providing bicyclic hydroxy ketones with complete diastereoselectivity and high yields.
View Article and Find Full Text PDFA set of 16 new simplified analogues of acetogenins has been designed based on: (i) the replacement of the bis THF moiety of these natural products by an ethylene glycol bis ether unit; (ii) the introduction of different lipophilic side chains (alkyl, aryl, dialkylamino, O-cholesteryl); (iii) the presence of the same terminal isolactone. In vitro cytotoxic activity against L1210 leukemia is reported.
View Article and Find Full Text PDFThe microbiological hydroxylation of some 3 alpha,5-cycloandrostanes by the fungus, Cephalosporium aphidicola has been shown to take place at C-2 alpha and C-14 alpha and a 6 beta-alcohol was oxidized to the 6-ketone.
View Article and Find Full Text PDF