Publications by authors named "Hueih Min Chen"

Allergen-reactive T helper (Th) 2 cells play a pivotal role in initiating asthma pathogenesis. The absence or interruption of CD28 signaling causes significant consequences for T-cell activation, leading to reduced cell proliferation and interleukin (IL)-2 production. A novel compound, Cyn-1324, exhibits a higher binding affinity to CD28 than CD80.

View Article and Find Full Text PDF

Enhancing the efficiency of antibody protein immobilized on a silicon nanowire-based chip for their antigens detection is reported. An external electric field (EEF) is applied to direct the orientation of antibodies during their immobilization on a chip. Atomic force microscopy (AFM) is used to measure the binding forces between immobilized antibody and targeting antigen under the influence of EEF at different angles.

View Article and Find Full Text PDF

This study elucidates that the protein reorientation on a chip can be changed by an external electric field (EEF) and optimised for achieving strong effective binding between proteins. Protein A and its binding protein immunoglobulin G (IgG) were used as an example, in addition to an anticancer peptide (CB1a) and its antibody (anti-CB1a). The binding forces (BFs) were measured by atomic force microscopy (AFM) with EEFs applied at different angles (EEF°).

View Article and Find Full Text PDF

Cecropin B is a natural antimicrobial peptide and CB1a is a custom, engineered modification of it. In vitro, CB1a can kill lung cancer cells at concentrations that do not kill normal lung cells. Furthermore, in vitro, CB1a can disrupt cancer cells from adhering together to form tumor-like spheroids.

View Article and Find Full Text PDF

In this work, we introduce a new customized anti-lung cancer peptide, CB1a, with IC₅₀ of about 25.0 ± 1.6 μM on NCI-H460 lung cancer cells.

View Article and Find Full Text PDF

In this article, a technique for accurate direct measurement of protein-to-protein interactions before and after the introduction of a drug candidate is developed using atomic force microscopy (AFM). The method is applied to known immunosuppressant drug candidate Echinacea purpurea derived cynarin. T-cell/CD28 is on-chip immobilized and B-cell/CD80 is immobilized on an AFM tip.

View Article and Find Full Text PDF

Intestinal α-glucosidase performs a physiologically vital function in the digestive process of dietary carbohydrates. Administration of an α-glucosidase inhibitor may retard the digestion and absorption of carbohydrates. Consequently, the rise in postprandial blood glucose could be suppressed.

View Article and Find Full Text PDF

Staphylococcal nuclease (SNase) has a single Trp residue at position 140. Circular dichroism, intrinsic and ANS-binding fluorescence, chemical titrations and enzymatic assays were used to measure the changes of its structure, stability and activities as the Trp was mutated or replaced to other positions. The results show that W140 is critical to SNase structure, stability, and function.

View Article and Find Full Text PDF

The cationic lytic peptide cecropin B (CB), isolated from the giant silk moth (Hyalophora cecropia), has been shown to effectively eliminate Gram-negative and some Gram-positive bacteria. In this study, the effects of chemically synthesized CB on plant pathogens were investigated. The S(50)s (the peptide concentrations causing 50% survival of a pathogenic bacterium) of CB against two major pathogens of the tomato, Ralstonia solanacearum and Xanthomonas campestris pv.

View Article and Find Full Text PDF

Several natural antimicrobial peptides including cecropins, magainins and melittins have been found to kill cancer cells. However, their efficacy may not be adequate for their development as anticancer agents. In this study, we used a natural antimicrobial peptide, cecropin B (CB), as a template to generate a novel anticancer peptide.

View Article and Find Full Text PDF

Differential scanning calorimetry, circular dichroism spectroscopy, nuclear magnetic resonance spectroscopy, and numerical simulations were used to study the thermostability of the N-terminal RNA-binding domain (RBD) of the SARS-CoV nucleocapsid protein. The transition temperature of the RBD in a mixing buffer, composed of glycine, sodium acetate, and sodium phosphate with 100 mM sodium chloride, at pH 6.8, determined by differential scanning calorimetry and circular dichroism, is 48.

View Article and Find Full Text PDF

Purpose: Cynarin, a potential immunosuppressant that blocks the interaction between the CD28 of T-cell receptor and CD80 of antigen presenting cells, was found in Echinacea purpurea by a new pharmaceutical screening method: After Flowing Through Immobilized Receptor (AFTIR; Dong et al., J Med Chem, 49: 1845-1854, 2006). This Echinacea component is the first small molecule that is able to specifically block "signal 2" of T-cell activation.

View Article and Find Full Text PDF

Fluorescence and circular dichroism stopped-flow have been widely used to determine the kinetics of protein folding including folding rates and possible folding pathways. Yet, these measurements are not able to provide spatial information of protein folding/unfolding. Especially, conformations of denatured states cannot be elaborated in detail.

View Article and Find Full Text PDF

The Chinese herb, Gu-Sui-Bu (GSB) (Drynaria fortunei J. Sm.) has been anecdotally reported to enhance bone healing.

View Article and Find Full Text PDF

AFTIR (after flowing through immobilized receptor) is a novel method for screening herbal extracts for pharmaceutical properties. Using AFTIR, we identified Cynarin in Echinacea purpurea by its selective binding to chip immobilized CD28, a receptor of T-cells, which is instrumental to immune functioning. The results of surface plasma resonance show that binding between immobilized CD28 and Cynarin is stronger than the binding between CD28 and CD80, a co-stimulated receptor of antigen presenting cells.

View Article and Find Full Text PDF

Investigations were carried out to evaluate the therapeutic properties of the seeds and leaves of Moringa oleifera Lam as herbal medicines. Ethanol extracts showed anti-fungal activities in vitro against dermatophytes such as Trichophyton rubrum, Trichophyton mentagrophytes, Epidermophyton floccosum, and Microsporum canis. GC-MS analysis of the chemical composition of the essential oil from leaves showed a total of 44 compounds.

View Article and Find Full Text PDF

Structural investigation of GABAA receptors has been limited by difficulties imposed by its trans-membrane-complex nature. In the present study, the topology of a membrane-proximal beta-rich (MPB) domain in the C139-L269 segment of the receptor alpha1 subunit was probed by mapping the benzodiazepine (BZ)-binding and epitopic sites, as well as fluorescence resonance energy transfer (FRET) analysis. Ala-scanning and semiconservative substitutions within this segment revealed the contribution of the phenyl rings of Y160 and Y210, the hydroxy group of S186 and the positive charge on R187 to BZ-binding.

View Article and Find Full Text PDF

Staphylococcal nuclease is a single domain protein with 149 amino acids. It has no disulfide bonds, which makes it a simple model for the study of protein folding. In this study, 20 mutants of this protein were generated each with a single base substitution of glycine for negatively charged glutamic acid or aspartic acid.

View Article and Find Full Text PDF

Staphylococcal nuclease (SNase) is a model protein that contains one domain and no disulfide bonds. Its stability in the native state may be maintained mainly by key amino acids. In this study, two point-mutated proteins each with a single base substitution [alanine for tryptophan (W140A) and alanine for lysine (K133A)] and two truncated fragment proteins (positions 1-139 [SNase(1-139) or W140O] and positions 1-141 [SNase(1-141) or E142O]) were generated.

View Article and Find Full Text PDF

The anticancer activity of anti-bacterial cecropins makes them potentially useful as peptide anti-cancer drugs. We used the cell-attached patch to study the effect of cecropin B (CB; having one hydrophobic and one amphipathic alpha-helix) and its derivative, cecropin B3 (CB3; having two hydrophobic alpha-helices) on the membrane of Ags cancer cells. Application of 10-60 microM CB onto the membrane of the cancer cell produces short outward currents.

View Article and Find Full Text PDF

The pathway of cell membrane lysis by the peptide antibiotic cecropin B (CB), which contains both a hydrophobic and an amphipathic alpha-helix, was analysed by assessing the morphological changes of Escherichia coli following treatment with the peptide. Exposure of green fluorescent protein (GFP)-expressing E. coli to CB does not lead to an efflux of GFP.

View Article and Find Full Text PDF

Different pathways of bilayer disruption by the structurally related antimicrobial peptides cecropin B, B1 and B3, revealed by surface plasma resonance analysis of immobilized liposomes, differential scanning calorimetry of peptide-large unilamellar vesicle interactions, and light microscopic analysis of peptide-treated giant unilamellar vesicles, have been identified in this study. Natural cecropin B (CB) has one amphipathic and one hydrophobic alpha-helix, whereas cecropins B1 (CB1) and B3 (CB3), which are custom-designed, chimaeric analogues of CB, possess either two amphipathic or two hydrophobic alpha-helices, respectively. Surface plasma resonance analysis of unilamellar vesicles immobilized through a biotin-avidin interaction showed that both CB and CB1 bind to the lipid bilayers at high concentration (>10 microm); in contrast, CB3 induces disintegration of the vesicles at all concentrations tested.

View Article and Find Full Text PDF

Anti-microbial cecropins are humoral immune peptides originally found in insects. They possess a particular function of membrane permeabilization on both gram-positive and gram-negative bacteria. Yet, they are not capable of lysing eucaryotic cells.

View Article and Find Full Text PDF