Publications by authors named "Huei-Ju Pan"

The purpose of this study is to investigate the regulation of P-glycoprotein expression in the kidney under diabetic condition. Renal P-glycoprotein expression was examined in inbred mice with type 1 or type 2 diabetes by Western blotting. The underlying mechanisms of P-glycoprotein regulation were examined in Madin-Darby canine kidney type II (MDCK-II) cells by Western blotting or qRT-PCR.

View Article and Find Full Text PDF

Aims: To investigate the expression of P-gp and caveolins in brain striatum capillaries in inbred mice with type 2 diabetes.

Main Methods: Inbred mice with type 2 diabetes (male New Zealand obese; NZO) were compared with related mice without diabetes (female NZO and New Zealand White). Protein expression of P-gp and caveolins in capillaries of the brain striatum was examined by immunohistochemical analysis.

View Article and Find Full Text PDF

Aims: Glucose transporter 10 (GLUT10), encoded by the SLC2A10 gene, is a member of the class III facilitative glucose transporter family. Mutations in the SLC2A10 gene cause arterial tortuosity syndrome (ATS) in humans. To further study the pathogenesis of the disease, we generated mice carrying GLUT10 mutations.

View Article and Find Full Text PDF

New Zealand obese (NZO/HlLt) male mice develop polygenic diabetes and altered phosphatidylcholine metabolism. The gene encoding phosphatidylcholine transfer protein (PC-TP) is sited within the support interval for Nidd3, a recessive NZO-derived locus on Chromosome 11 identified by prior segregation analysis between NZO/HlLt and NON/Lt. Sequence analysis revealed that the NZO-derived PC-TP contained a non-synonymous point mutation that resulted in an Arg120His substitution, which was shared by the related NZB/BlNJ and NZW/LacJ mouse strains.

View Article and Find Full Text PDF

Given the heterogeneous nature of metabolic dysfunctions associated with insulin resistance and type 2 diabetes (T2D), a single pharmaceutical cannot be expected to provide complication-free therapy in all patients. Thiazolidinediones (TZD) increase insulin sensitivity, reduce blood glucose and improve cardiovascular parameters. However, in addition to increasing fat mass, TZD have the potential in certain individuals to exacerbate underlying hepatosteatosis and diabetic cardiomyopathy.

View Article and Find Full Text PDF

Polygenic mouse models for obesity-induced type 2 diabetes (T2D) more accurately reflect the most common manifestations of the human disease. Two inbred mouse strains (NON/Lt and NZO/HlLt) separately contributed T2D susceptibility- conferring quantitative trait loci to F1 males. Although chronic administration of rosiglitazone (Rosi) in diet (50 mg/kg) effectively suppressed F1 diabetes, hepatosteatosis was an undesired side effect.

View Article and Find Full Text PDF

Although thiazolidinediones suppress hyperglycemia in diabetic (NON x NZO)F1 males, these mice exhibit unusual sensitivity to drug-induced exacerbation of an underlying hepatosteatosis only rarely experienced in human patients. To establish the pharmacogenetic basis for this sensitivity, a panel of recombinant congenic strains (RCSs) with varying degrees of obesity and diabetes was generated by fixing selected NZO HlLt alleles on the diabetes- and hepatosteatosis-resistant NON/Lt background. Four new strains in this panel were exposed to chronic rosiglitazone treatment.

View Article and Find Full Text PDF

The goal of the Complex Trait Consortium is to promote the development of resources that can be used to understand, treat and ultimately prevent pervasive human diseases. Existing and proposed mouse resources that are optimized to study the actions of isolated genetic loci on a fixed background are less effective for studying intact polygenic networks and interactions among genes, environments, pathogens and other factors. The Collaborative Cross will provide a common reference panel specifically designed for the integrative analysis of complex systems and will change the way we approach human health and disease.

View Article and Find Full Text PDF

New Zealand Obese (NZO) male mice develop a polygenic juvenile-onset obesity and maturity-onset hyperinsulinemia and hyperglycemia (diabesity). Here we report on metabolic and molecular changes associated with the antidiabesity action of CL316,243 (CL), a beta(3)-adrenergic receptor agonist. Dietary CL treatment initiated at weaning reduced the peripubertal rise in body weight and adiposity while promoting growth without suppressing hyperphagia.

View Article and Find Full Text PDF

Territrem B, a fungal metabolite isolated from Aspergillums terreus 23-1, is a tremorgenic mycotoxin. Immunoelectron microscopy using anti-territrem B polyclonal antibody was used to detect territrem B in the fungal body of A. terreus 23-1 at different times of culture without shaking on potato dextrose (PD) agar medium.

View Article and Find Full Text PDF

A rapid emergence of nosocomial methicillin-resistant Staphylococcus aureus (MRSA) infection (from 26.3% in 1986 to 77% in 2001) was found. The susceptibility of 200 nonduplicate blood isolates of MRSA and 100 MRSA isolates causing refractory bacteremia to 22 antimicrobial agents disclosed that glycopeptides, quinupristin-dalfopristin, and linezolid remained the most active agents.

View Article and Find Full Text PDF

Secretin is released from upper small intestinal mucosa to drive pancreatic secretion of fluid and bicarbonate and inhibit gastric acid secretion. Recently, we found that, in isolated, vascularly perfused rat stomach model, the inhibition of acid secretion by pituitary adenylate cyclase activating polypeptide (PACAP) was mediated in part via local release of secretin. However, the presence of secretin-producing cells and mRNA in gastric mucosa, particularly in oxyntic mucosa, has not been established.

View Article and Find Full Text PDF

Successful therapy for chronic diseases must normalize a targeted aspect of metabolism without disrupting the regulation of other metabolic pathways essential for maintaining health. Use of a limited number of single molecule surrogates for disease, or biomarkers, to monitor the efficacy of a therapy may fail to predict undesirable side effects. In this study, a comprehensive metabolomic assessment of lipid metabolites was employed to determine the specific effects of the peroxisome proliferator-activated receptor gamma (PPARgamma) agonist rosiglitazone on structural lipid metabolism in a new mouse model of Type 2 diabetes.

View Article and Find Full Text PDF