Publications by authors named "Hue Quach"

Current in vitro and in vivo assays used to study immunotherapeutic interventions lack human immune components that mimic the tumor microenvironment to investigate drug potency and limitations of efficacy. Herein, we describe an ex vivo pleural effusion culture (ePEC) assay, using malignant pleural-effusion-derived soluble and cellular factors that differentially affected the cytotoxicity of chimeric antigen receptor (CAR) T cells. Following identification of CAR T cell-suppressive factors, blocking of individual factors reveals their contribution to compromising T cell efficacy.

View Article and Find Full Text PDF

Infiltration of tumor by T cells is a prerequisite for successful immunotherapy of solid tumors. In this study, we investigate the influence of tumor-targeted radiation on chimeric antigen receptor (CAR) T-cell therapy tumor infiltration, accumulation, and efficacy in clinically relevant models of pleural mesothelioma and non-small cell lung cancers. We use a nonablative dose of tumor-targeted radiation prior to systemic administration of mesothelin-targeted CAR T cells to assess infiltration, proliferation, antitumor efficacy, and functional persistence of CAR T cells at primary and distant sites of tumor.

View Article and Find Full Text PDF

Introduction: In solid tumor immunotherapy, less than 20% of patients respond to anti-programmed cell death 1 (PD-1)/programmed cell death 1 ligand 1 (PD-L1) agents. The role of transforming growth factor β (TGFβ) in diverse immunity is well-established; however, systemic blockade of TGFβ is associated with toxicity. Accumulating evidence suggests the role of crosstalk between TGFβ and PD-1/PD-L1 pathways.

View Article and Find Full Text PDF

The aim of adoptive T-cell therapy is to promote tumor-infiltrating immune cells following the transfer of either tumor-harvested or genetically engineered T lymphocytes. A new chapter in adoptive T-cell therapy began with the success of chimeric antigen receptor (CAR) T-cell therapy. T cells harvested from peripheral blood are transduced with genetically engineered CARs that render the ability to recognize cancer cell-surface antigen and lyse cancer cells.

View Article and Find Full Text PDF

The transcription factor nuclear factor κB (NF-κB) regulates various biological processes, including inflammatory responses. We previously reported that eudesmane-type sesquiterpene lactones inhibited multiple steps in the canonical NF-κB signaling pathway induced by tumor necrosis factor-α and interleukin-1α. In contrast, the biological activities of eudesmane-type sesquiterpene lactones on the non-canonical NF-κB signaling pathway remain unclear.

View Article and Find Full Text PDF

Allantopyrone A is a fungal metabolite that uniquely possesses two α,β-unsaturated carbonyl moieties. We recently reported that allantopyrone A inhibited the nuclear factor-κB (NF-κB) signaling pathway induced by tumor necrosis factor (TNF)-α in human lung carcinoma A549 cells. In the present study, the mechanism by which allantopyrone A inhibits the TNF-α-induced signaling pathway was investigated in more detail.

View Article and Find Full Text PDF

Irciniastatin A is a pederin-type marine product that potently inhibits translation. We have recently shown that irciniastatin A induces ectodomain shedding of tumor necrosis factor (TNF) receptor 1 with slower kinetics than other translation inhibitors. In human lung carcinoma A549 cells, irciniastatin A induced a marked and sustained activation of extracellular signal-regulated kinase (ERK) and induced little activation of p38 mitogen-activated protein (MAP) kinase and c-Jun N-terminal kinase (JNK).

View Article and Find Full Text PDF