Nickel (Ni) is in the earth's crust and can be found in environmental compartments such as water, soil, and air, as well as food. This paper presents an assessment of the oral nickel toxicity data in support of non-cancer health-based oral exposure limits or toxicity reference values (TRVs). This paper derives TRVs for three populations of interest: adults, toddlers, and people who have been dermally sensitized to nickel.
View Article and Find Full Text PDFIn vitro metal ion bioaccessibility, as a measure of bioavailability, can be used to read-across toxicity information from data-rich, source substances to data-poor, target substances. To meet the data requirements for oral systemic toxicity endpoints under the REACH Regulation in Europe, 12 nickel substances underwent bioaccessibility testing in stomach and intestinal fluids. A read-across paradigm was developed based on the correlation between gastric bioaccessibility and in vivo acute oral toxicity.
View Article and Find Full Text PDFRegul Toxicol Pharmacol
April 2012
Acute oral toxicity studies were conducted on samples of nine unique nickel compounds and two complex materials to comply with the data and classification requirements of the new Registration, Evaluation, and Authorization of Chemicals Regulation (REACH) in Europe. The samples tested in this study confirmed the overall low oral toxicity of nickel substances and demonstrated a wide range of LD(50) values extending from 310 to >11,000 mg/kg. This variation highlights the differences in toxicological properties between various forms of nickel and underscores the importance of Ni(II) ion bioavailability in determining toxicity.
View Article and Find Full Text PDFLeaching in ammonium citrate has been extensively used to assess the fraction of water-soluble nickel compounds present in nickel producing and using workplace aerosols. Leaching in ammonium citrate according to the first step of the Zatka protocol was found to overestimate the water-soluble nickel fraction by more than ten-fold compared to synthetic lung fluid (37 degrees C), when nickel carbonate and subsulfide were present. These results suggest that exposure matrices based on this method should be reexamined.
View Article and Find Full Text PDFChemical speciation of workplace nickel exposures is critical because nickel-containing substances often differ in toxicological properties. Exposure matrices based on leaching methods have been used to ascertain which chemical forms of nickel are primarily associated with adverse respiratory effects after inhalation. Misjudgments in the relative proportion of each of the main fractions of nickel in workplace exposures could translate into possible misattributions of risk to the various forms of nickel.
View Article and Find Full Text PDFToxicol Appl Pharmacol
December 2008
Epidemiological studies of nickel refinery workers have demonstrated an association between increased respiratory cancer risk and exposure to certain nickel compounds (later confirmed in animal studies). However, the lack of an association found in epidemiological analyses for nickel metal remained unconfirmed for lack of robust animal inhalation studies. In the present study, Wistar rats were exposed by whole-body inhalation to 0, 0.
View Article and Find Full Text PDFToxicol Appl Pharmacol
October 2007
Until now, existing data on the oral carcinogenicity of nickel substances have been inconclusive. Yet, the assessment of oral carcinogenicity of nickel has serious scientific and regulatory implications. In the present study, nickel sulfate hexahydrate was administered daily to Fischer 344 rats by oral gavage for 2 years (104 weeks) at exposure levels of 10, 30 and 50 mg NiSO(4).
View Article and Find Full Text PDF