Aberrant signaling via fibroblast growth factor 19 (FGF19)/fibroblast growth factor receptor 4 (FGFR4) has been identified as a driver of tumorigenesis and the development of many solid tumors, making FGFR4 is a promising target for anticancer therapy. Herein, we designed and synthesized a series of bis-acrylamide covalent FGFR4 inhibitors and evaluated their inhibitory activity against FGFRs, FGFR4 mutants, and their antitumor activity. CXF-007, verified by mass spectrometry and crystal structures to form covalent bonds with Cys552 of FGFR4 and Cys488 of FGFR1, exhibited stronger selectivity and potent inhibitory activity for FGFR4 and FGFR4 cysteine mutants.
View Article and Find Full Text PDFRetinoic acid-related orphan receptor gamma (RORγ) plays critical roles in regulating various biological processes and has been linked to immunodeficiency disorders and cancers. DNA recognition is essential for RORγ to exert its functions. However, the underlying mechanism of the DNA binding by RORγ remains unclear.
View Article and Find Full Text PDFClass IIa Histone deacetylases (HDACs), including HDAC4, 5, 7 and 9, play key roles in multiple important developmental and differentiation processes. Recent studies have shown that class IIa HDACs exert their transcriptional repressive function by interacting with tissue-specific transcription factors, such as members of the myocyte enhancer factor 2 (MEF2) family of transcription factors. However, the molecular mechanism is not well understood.
View Article and Find Full Text PDFAcquired drug resistance poses a challenge for single-target FGFR inhibitors, leading to the development of dual- or multi-target FGFR inhibitors. Sulfatinib is a multi-target kinase inhibitor for treating neuroendocrine tumors, selectively targeting FGFR1/CSF-1R. To elucidate the molecular mechanisms behind its binding and kinase selectivity, we determined the crystal structures of sulfatinib with FGFR1/CSF-1R.
View Article and Find Full Text PDFComput Struct Biotechnol J
November 2023
c-Met has been an attractive target of prognostic and therapeutic studies in various cancers. TPX-0022 is a macrocyclic inhibitor of c-Met, c-Src and CSF1R kinases and is currently in phase I/II clinical trials in patients with advanced solid tumors harboring MET gene alterations. In this study, we determined the co-crystal structures of the c-Met/TPX-0022 and c-Src/TPX-0022 complexes to help elucidate the binding mechanism.
View Article and Find Full Text PDFComput Struct Biotechnol J
July 2023
The apoptotic pathway is regulated by protein-protein interactions between members of the Bcl-2 family. Pro-survival Bcl-2 family proteins act as cell guardians and protect cells against death. Selective binding and neutralization of BH3-only proteins with pro-survival Bcl-2 family proteins is critical for initiating apoptosis.
View Article and Find Full Text PDFMitochondrial apoptosis is strictly controlled by BCL-2 family proteins through a subtle network of protein interactions. The tumor suppressor protein p53 triggers transcription-independent apoptosis through direct interactions with BCL-2 family proteins, but the molecular mechanism is not well understood. In this study, we present three crystal structures of p53-DBD in complex with the anti-apoptotic protein BCL-2 at resolutions of 2.
View Article and Find Full Text PDFComput Struct Biotechnol J
May 2023
Farnesoid X receptor (FXR) is a ligand-activated transcription factor known as bile acid receptor (BAR). FXR plays critical roles in various biological processes, including metabolism, immune inflammation, liver regeneration and liver carcinogenesis. FXR forms a heterodimer with the retinoid X receptor (RXR) and binds to diverse FXR response elements (FXREs) to exert its various biological functions.
View Article and Find Full Text PDFSignal Transduct Target Ther
March 2023
The TP53 tumor suppressor is the most frequently altered gene in human cancers, and has been a major focus of oncology research. The p53 protein is a transcription factor that can activate the expression of multiple target genes and plays critical roles in regulating cell cycle, apoptosis, and genomic stability, and is widely regarded as the "guardian of the genome". Accumulating evidence has shown that p53 also regulates cell metabolism, ferroptosis, tumor microenvironment, autophagy and so on, all of which contribute to tumor suppression.
View Article and Find Full Text PDFFibroblast growth factor receptor (FGFR) dysregulation is involved in a variety of tumorigenesis and development. Cholangiocarcinoma is closely related with FGFR aberrations, and pemigatinib is the first drug approved to target FGFR for the treatment of cholangiocarcinoma. Herein, we undertake biochemical and structural analysis on pemigatinib against FGFRs as well as gatekeeper mutations.
View Article and Find Full Text PDFThe fibroblast growth factor 19 (FGF19)/fibroblast growth factor receptor 4 (FGFR4) signaling pathways play critical roles in a variety of cancers, such as hepatocellular carcinoma (HCC). FGFR4 is recognized as a promising target to treat HCC. Currently, all FGFR covalent inhibitors target one of the two cysteines (Cys477 and Cys552).
View Article and Find Full Text PDFFIIN-2, TAS-120 (Futibatinib) and PRN1371 are highly potent pan-FGFR covalent inhibitors targeting the p-loop cysteine of FGFR proteins, of which TAS-120 and PRN1371 are currently in clinical trials. It is critical to analyze their target selectivity and their abilities to overcome gatekeeper mutations. In this study, we demonstrate that FIIN-2 and TAS-120 form covalent adducts with SRC, while PRN1371 does not.
View Article and Find Full Text PDFThe aryl hydrocarbon receptor (AHR), a member of the basic helix-loop-helix (bHLH) Per-Arnt-Sim (PAS) family of transcription factors, plays important roles in regulating xenobiotic metabolism, cellular differentiation, stem cell maintenance, as well as immunity. More recently, AHR has gained significant interest as a drug target for the development of novel cancer immunotherapy drugs. Detailed understanding of AHR-ligand binding has been hampered for decades by the lack of a three-dimensional structure of the AHR PAS-B domain.
View Article and Find Full Text PDFBiochem Biophys Res Commun
May 2022
Fumarates (fumaric acid esters), primarily dimethyl fumarate (DMF) and monoethyl fumarate (MEF) and its salts, are orally administered systemic agents used for the treatment of psoriasis and multiple sclerosis. It is widely believed that the pharmaceutical activities of fumarates are exerted through the Keap1-Nrf2 pathway. Although it has been revealed that DMF and MEF differentially modify specific Keap1 cysteine residues and result in the differential activation of Nrf2, how the modification of DMF and MEF impacts the biochemical properties of Keap1 has not been well characterized.
View Article and Find Full Text PDFPonatinib is a multi-target tyrosine kinase inhibitor that targets ABL, SRC, FGFR, and so on. It was designed to overcome the resistance of BCR-ABL mutation to imatinib, especially the gatekeeper mutation ABL. The molecular mechanism by which ponatinib overcomes mutations of BCR-ABL and some other targets has been explained, but little information is known about the characteristics of ponatinib binding to SRC.
View Article and Find Full Text PDFBiochem Biophys Res Commun
March 2022
Farnesoid X receptor (FXR) is a bile acid-related nuclear receptor and is considered a promising target to treat several liver disorders. Cilofexor is a selective FXR agonist and has already entered phase III trials in primary sclerosing cholangitis (PSC) patients. Pruritis caused by cilofexor treatment is dose dependent.
View Article and Find Full Text PDFFarnesoid X receptor (FXR) is a bile acid activated nuclear receptor (BAR) and is mainly expressed in the liver and intestine. Upon ligand binding, FXR regulates key genes involved in the metabolic process of bile acid synthesis, transport and reabsorption and is also involved in the metabolism of carbohydrates and lipids. Because of its important functions, FXR is considered as a promising drug target for the therapy of bile acid-related liver diseases.
View Article and Find Full Text PDFMyeloid leukemia 1 (MCL-1) is an antiapoptotic protein of the BCL-2 family that prevents apoptosis by binding to the pro-apoptotic BCL-2 proteins. Overexpression of MCL-1 is frequently observed in many tumor types and is closely associated with tumorigenesis, poor prognosis and drug resistance. The central role of MCL-1 in regulating the mitochondrial apoptotic pathway makes it an attractive target for cancer therapy.
View Article and Find Full Text PDFThe tumor suppressor p53 is mutated in approximately half of all human cancers. p53 can induce apoptosis through mitochondrial membrane permeabilization by interacting with and antagonizing the anti-apoptotic proteins BCL-xL and BCL-2. However, the mechanisms by which p53 induces mitochondrial apoptosis remain elusive.
View Article and Find Full Text PDFForkhead transcription factors bind a canonical consensus DNA motif, RYAAAYA (R = A/G, Y = C/T), as a monomer. However, the molecular mechanisms by which forkhead transcription factors bind DNA as a dimer are not well understood. In this study, we show that FOXO1 recognizes a palindromic DNA element DIV2, and mediates transcriptional regulation.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2021
Farnesoid X receptor (FXR) is considered as a potential target for the treatment of several liver disorders such as primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC). Tropifexor is a highly potent and non-steroidal FXR agonist that has progressed into phase II clinical trials in patients with PBC. The clinical trials demonstrate that tropifexor improved serum markers of patients with liver diseases and lower side effect such as pruritus that might be implicated with TGR5 activation.
View Article and Find Full Text PDFBiochem Biophys Res Commun
February 2020
The nuclear receptor NR4A subfamily (NR4A1/NGFI-B, NR4A2/Nurr1 and NR4A3/NOR-1) can recognize different classes of DNA response elements either as a monomer, homodimer, or heterodimer. In this study, we determined the structure of the NR4A1 DNA-binding domain (NR4A1-DBD) bound to natural Nur-responsive elements (NurREs) in the promoter region of the pituitary proopiomelanocortin (POMC) gene (NurRE) at 3.12 Å resolution.
View Article and Find Full Text PDFProteins of nuclear receptor subfamily 4 group A (NR4A), including NR4A1/NGFI-B, NR4A2/Nurr1, and NR4A3/NOR-1, are nuclear transcription factors that play important roles in metabolism, apoptosis, and proliferation. NR4A proteins recognize DNA response elements as monomers or dimers to regulate the transcription of a variety of genes involved in multiple biological processes. In this study, we determined two crystal structures of the NR4A2 DNA-binding domain (NR4A2-DBD) bound to two Nur-responsive elements: an inverted repeat and an everted repeat at 2.
View Article and Find Full Text PDF