Alzheimer's disease is one of at least 26 diseases characterized by tau-positive accumulation in neurons, glia or both. However, it is still unclear what modifications cause soluble tau to transform into insoluble aggregates. We previously performed genetic screens that identified tyrosine kinase 2 (TYK2) as a candidate regulator of tau levels.
View Article and Find Full Text PDFTauopathies are neurodegenerative diseases that involve the pathological accumulation of tau proteins; in this family are Alzheimer disease, corticobasal degeneration, and chronic traumatic encephalopathy, among others. Hypothesizing that reducing this accumulation could mitigate pathogenesis, we performed a cross-species genetic screen targeting 6,600 potentially druggable genes in human cells and Drosophila. We found and validated 83 hits in cells and further validated 11 hits in the mouse brain.
View Article and Find Full Text PDFExpansion of the polyglutamine tract in the N terminus of Ataxin-1 is the main cause of the neurodegenerative disease, spinocerebellar ataxia type 1 (SCA1). However, the C-terminal part of the protein - including its AXH domain and a phosphorylation on residue serine 776 - also plays a crucial role in disease development. This phosphorylation event is known to be crucial for the interaction of Ataxin-1 with the 14-3-3 adaptor proteins and has been shown to indirectly contribute to Ataxin-1 stability.
View Article and Find Full Text PDFHere, we present a mouse brain protein atlas that covers 17 surgically distinct neuroanatomical regions of the adult mouse brain, each less than 1 mm in size. The protein expression levels are determined for 6,500 to 7,500 gene protein products from each region and over 12,000 gene protein products for the entire brain, documenting the physiological repertoire of mouse brain proteins in an anatomically resolved and comprehensive manner. We explored the utility of our spatially defined protein profiling methods in a mouse model of Parkinson's disease.
View Article and Find Full Text PDFMethyl-CpG binding protein 2 (MeCP2) is a nuclear protein with important roles in regulating chromatin structure and gene expression, and mutations in MECP2 cause Rett syndrome (RTT). Within the MeCP2 protein sequence, the nuclear localization signal (NLS) is reported to reside between amino acids 255-271, and certain RTT-causing mutations overlap with the MeCP2 NLS, suggesting that they may alter nuclear localization. One such mutation, R270X, is predicted to interfere with the localization of MeCP2, but recent in vivo studies have demonstrated that this mutant remains entirely nuclear.
View Article and Find Full Text PDFTwo severe, progressive neurological disorders characterized by intellectual disability, autism, and developmental regression, Rett syndrome and MECP2 duplication syndrome, result from loss and gain of function, respectively, of the same critical gene, methyl-CpG-binding protein 2 (MECP2). Neurons acutely require the appropriate dose of MECP2 to function properly but do not die in its absence or overexpression. Instead, neuronal dysfunction can be reversed in a Rett syndrome mouse model if MeCP2 function is restored.
View Article and Find Full Text PDFMutations in the X-linked MECP2 cause Rett syndrome, a devastating neurological disorder typified by a period of apparently normal development followed by loss of cognitive and psychomotor skills. Data from rare male patients suggest symptom onset and severity can be influenced by the location of the mutation, with amino acids 270 and 273 marking the difference between neonatal encephalopathy and death, on the one hand, and survival with deficits on the other. We therefore generated two mouse models expressing either MeCP2-R270X or MeCP2-G273X.
View Article and Find Full Text PDF