Inner-shell photoelectron spectroscopy provides an element-specific probe of molecular structure, as core-electron binding energies are sensitive to the chemical environment. Short-wavelength femtosecond light sources, such as Free-Electron Lasers (FELs), even enable time-resolved site-specific investigations of molecular photochemistry. Here, we study the ultraviolet photodissociation of the prototypical chiral molecule 1-iodo-2-methylbutane, probed by extreme-ultraviolet (XUV) pulses from the Free-electron LASer in Hamburg (FLASH) through the ultrafast evolution of the iodine 4d binding energy.
View Article and Find Full Text PDFWe report the observation of the radiative decay of singly charged noble gas ground-state ions embedded in heterogeneous van der Waals clusters. Electron-photon coincidence spectroscopy and dispersed photon spectroscopy are applied to identify the radiative charge transfer from Kr atoms to a Ne_{2}^{+} dimer, which forms after single valence photoionization of Ne atoms at the surface of a NeKr cluster. This mechanism might be a fundamental decay process of ionized systems in an environment.
View Article and Find Full Text PDFEnergy and charge transfer processes play an important role in many fundamental reactions in chemistry, biochemistry, and even technology. If an entity that is part of a larger system is photoexcited, its energy will dissipate, for example, by rearrangement of electron density in a large molecule or by photon emission (fluorescence). Here, we report the experimental observation of free electrons from a heterogeneous van der Waals cluster, in which some sites act as electron emitters receiving their energy efficiently from other "antenna" sites that are resonantly excited in the UV range.
View Article and Find Full Text PDF