Aim The objective of this study is to assess the level of awareness of the effect of diabetes and diabetic retinopathy (DR) on the eye among a sample of the Jeddah community. Methods A cross-sectional study was conducted among those attending a diabetes awareness camp in Jeddah, Saudi Arabia, in November 2021. Participants were asked to answer questions in a structured questionnaire that was already used in a previous study.
View Article and Find Full Text PDFChronic stress affects nano to microscale structures of the brain cells/tissues due to suppression of neural growths and reconnections, hence the neuronal activities. This results in depression, memory loss and even death of the brain cells. Our recently developed novel optical technique, partial wave spectroscopic microscopy has nanoscale sensitivity, and hence, can detect nanoscale changes in brain tissues due to stress.
View Article and Find Full Text PDFAs cancer progresses, macromolecules, such as DNA, RNA or lipids, inside cells undergo spatial structural rearrangements and alterations. Mesoscopic light transport-based optical partial wave spectroscopy (PWS) was recently introduced to quantify changes in the nanoscale structural disorder in biological cells. The PWS measurement is performed using a parameter termed as "disorder strength" (L ), which represents the degree of nanoscale structural disorder inside the cells.
View Article and Find Full Text PDFLight localization is a phenomenon which arises due to the interference effects of light waves inside a disordered optical medium. Quantification of degree light localization in optical media is widely used for characterizing degree of structural disorder in that media. Recently, this light localization approach was extended to analyze structural changes in biological cell like heterogeneous optical media, with potential application in cancer diagnostics.
View Article and Find Full Text PDFWe have developed a novel technique to quantify submicron scale mass density fluctuations in weakly disordered heterogeneous optical media using confocal fluorescence microscopy. Our method is based on the numerical evaluation of the light localization properties of an 'optical lattice' constructed from the pixel intensity distributions of images obtained with confocal fluorescence microscopy. Here we demonstrate that the technique reveals differences in the mass density fluctuations of the fluorescently labeled molecules between normal and cancer cells, and that it has the potential to quantify the degree of malignancy of cancer cells.
View Article and Find Full Text PDFChronic alcoholism is known to alter the morphology of the hippocampus, an important region of cognitive function in the brain. Therefore, to understand the effect of chronic alcoholism on hippocampal neural cells, we employed a mouse model of chronic alcoholism and quantified intranuclear nanoscale structural alterations in these cells. Transmission electron microscopy (TEM) images of hippocampal neurons were obtained, and the degree of structural alteration in terms of mass density fluctuation was determined using the light-localization properties of optical media generated from TEM imaging.
View Article and Find Full Text PDF