Focused Ultrasound Blood-Brain Barrier Opening (FUS-BBBO) can deliver adeno-associated viral vectors (AAVs) to treat genetic disorders of the brain. However, such disorders often affect large brain regions. Moreover, the applicability of FUS-BBBO in the treatment of brain-wide genetic disorders has not yet been evaluated.
View Article and Find Full Text PDFMesenchymal stem cell (MSC)-seeded polymeric perivascular wraps have been shown to enhance arteriovenous fistula (AVF) maturation. However, the wraps' radiolucency makes their placement and integrity difficult to monitor. Through electrospinning, we infused gold nanoparticles (AuNPs) into polycaprolactone (PCL) wraps to improve their radiopacity and tested whether infusion affects the previously reported beneficial effects of the wraps on the AVF's outflow vein.
View Article and Find Full Text PDFAdv Healthc Mater
October 2023
Bioresorbable perivascular scaffolds loaded with antiproliferative agents have been shown to enhance arteriovenous fistula (AVF) maturation by inhibiting neointimal hyperplasia (NIH). These scaffolds, which can mimic the three-dimensional architecture of the vascular extracellular matrix, also have an untapped potential for the local delivery of cell therapies against NIH. Hence, an electrospun perivascular scaffold from polycaprolactone (PCL) to support mesenchymal stem cell (MSC) attachment and gradual elution at the AVF's outflow vein is fabricated.
View Article and Find Full Text PDFBackground: To address high rates of arteriovenous fistula (AVF) failure, a mesenchymal stem cell (MSC)-seeded polymeric perivascular wrap has been developed to reduce neointimal hyperplasia (NIH) and enhance AVF maturation in a rat model. However, the wrap's radiolucency makes its placement and integrity difficult to monitor.
Purpose: In this study, we infused gold nanoparticles (AuNPs) into the polymeric perivascular wrap to improve its radiopacity and tested the effect of infusion on the previously reported beneficial effects of the polymeric wrap on the AVF outflow vein.
Background: Arteriovenous fistulas (AVFs) are a vital intervention for patients requiring hemodialysis, but they also contribute to overall mortality due to access malfunction. The most common cause of both AVF non-maturation and secondary failure is neointimal hyperplasia (NIH). Absorbable polycaprolactone (PCL) perivascular wraps can address these complications by incorporating drugs to attenuate NIH, such as rosuvastatin (ROSU), and metallic nanoparticles for visualization and device monitoring.
View Article and Find Full Text PDF