Purpose: The purpose of this study was to evaluate the efficacy of radiomics derived from slice-reduced CT (srCT) scans versus full-chest CT (fcCT) for diagnosing and staging of interstitial lung disease (ILD) in systemic sclerosis (SSc), considering the potential to reduce radiation exposure.
Material And Methods: The fcCT corresponded to a standard high-resolution full-chest CT whereas the srCT consisted of nine axial slices. 1451 radiomic features in two dimensions from srCT and 1375 features in three dimensions from fcCT scans were extracted from 166 SSc patients.
Antifibrotic therapy with nintedanib is the clinical mainstay in the treatment of progressive fibrosing interstitial lung disease (ILD). High-dimensional medical image analysis, known as radiomics, provides quantitative insights into organ-scale pathophysiology, generating digital disease fingerprints. Here, we performed an integrative analysis of radiomic and proteomic profiles (radioproteomics) to assess whether changes in radiomic signatures can stratify the degree of antifibrotic response to nintedanib in (experimental) fibrosing ILD.
View Article and Find Full Text PDFFilters are commonly used to enhance specific structures and patterns in images, such as vessels or peritumoral regions, to enable clinical insights beyond the visible image using radiomics. However, their lack of standardization restricts reproducibility and clinical translation of radiomics decision support tools. In this special report, teams of researchers who developed radiomics software participated in a three-phase study (September 2020 to December 2022) to establish a standardized set of filters.
View Article and Find Full Text PDFBackground: Interstitial lung disease (ILD) defines a group of parenchymal lung disorders, characterized by fibrosis as their common final pathophysiological stage. To improve diagnosis and treatment of ILD, there is a need for repetitive non-invasive characterization of lung tissue by quantitative parameters. In this study, we investigated whether CT image patterns found in mice with bleomycin induced lung fibrosis can be translated as prognostic factors to human patients diagnosed with ILD.
View Article and Find Full Text PDFPurpose: We explored imaging and blood bio-markers for survival prediction in a cohort of patients with metastatic melanoma treated with immune checkpoint inhibition.
Materials And Methods: 94 consecutive metastatic melanoma patients treated with immune checkpoint inhibition were included into this study. PET/CT imaging was available at baseline (Tp0), 3 months (Tp1) and 6 months (Tp2) after start of immunotherapy.
Background And Purpose: MR-guided radiotherapy (MRgRT) allows real-time beam-gating to compensate for intra-fractional target position variations. This study investigates the dosimetric impact of beam-gating and the impact of PTV margin on prostate coverage for prostate cancer patients treated with online-adaptive MRgRT.
Materials And Methods: 20 consecutive prostate cancer patients were treated with online-adaptive MRgRT SBRT with 36.
Background: Radiomic features calculated from routine medical images show great potential for personalised medicine in cancer. Patients with systemic sclerosis (SSc), a rare, multiorgan autoimmune disorder, have a similarly poor prognosis due to interstitial lung disease (ILD). Here, our objectives were to explore computed tomography (CT)-based high-dimensional image analysis ("radiomics") for disease characterisation, risk stratification and relaying information on lung pathophysiology in SSc-ILD.
View Article and Find Full Text PDFObjectives: In this study, we aimed to assess the impact of different CT reconstruction kernels on the stability of radiomic features and the transferability between different diseases and tissue types. Three lung diseases were evaluated, . non-small cell lung cancer (NSCLC), malignant pleural mesothelioma (MPM) and interstitial lung disease related to systemic sclerosis (SSc-ILD) as well as four different tissue types, .
View Article and Find Full Text PDFBackground: Radiomics is a promising tool for the identification of new prognostic biomarkers. Radiomic features can be affected by different scanning protocols, often present in retrospective and prospective clinical data. We compared a computed tomography (CT) radiomics model based on a large but highly heterogeneous multicentric image dataset with robust feature pre-selection to a model based on a smaller but standardized image dataset without pre-selection.
View Article and Find Full Text PDFPurpose: We assessed the predictive potential of positron emission tomography (PET)/CT-based radiomics, lesion volume, and routine blood markers for early differentiation of pseudoprogression from true progression at 3 months.
Experimental Design: 112 patients with metastatic melanoma treated with immune checkpoint inhibition were included in our study. Median follow-up duration was 22 months.
Q J Nucl Med Mol Imaging
December 2019
Introduction: Today, rapid technical and clinical developments result in an increasing number of treatment options for oncological diseases. Thus, decision support systems are needed to offer the right treatment to the right patient. Imaging biomarkers hold great promise in patient-individual treatment guidance.
View Article and Find Full Text PDFDue to the sharp gradients of intensity-modulated radiotherapy (IMRT) dose distributions, treatment uncertainties may induce substantial deviations from the planned dose during irradiation. Here, we investigate if the planned mean dose to parotid glands in combination with the dose gradient and information about anatomical changes during the treatment improves xerostomia prediction in head and neck cancer patients. Eighty eight patients were retrospectively analyzed.
View Article and Find Full Text PDFPurpose: The purpose of this study is to investigate whether machine learning with dosiomic, radiomic, and demographic features allows for xerostomia risk assessment more precise than normal tissue complication probability (NTCP) models based on the mean radiation dose to parotid glands.
Material And Methods: A cohort of 153 head-and-neck cancer patients was used to model xerostomia at 0-6 months (early), 6-15 months (late), 15-24 months (long-term), and at any time (a longitudinal model) after radiotherapy. Predictive power of the features was evaluated by the area under the receiver operating characteristic curve (AUC) of univariate logistic regression models.
Purpose: Xerostomia is a common side effect of radiotherapy resulting from excessive irradiation of salivary glands. Typically, xerostomia is modeled by the mean dose-response characteristic of parotid glands and prevented by mean dose constraints to either contralateral or both parotid glands. The aim of this study was to investigate whether normal tissue complication probability (NTCP) models based on the mean radiation dose to parotid glands are suitable for the prediction of xerostomia in a highly conformal low-dose regime of modern intensity-modulated radiotherapy (IMRT) techniques.
View Article and Find Full Text PDF