Publications by authors named "Hubert K Chan"

We investigate the nonlinear rheology of dilute, depletion-induced colloidal gels and report that these systems yield via a two-step process. We propose the two yield points to be associated with interparticle bond rotation and bond breakage, respectively. These distinct yielding mechanisms lead to remarkable creep profiles at intermediate values of the applied stress, highlighted by an anisotropic shear-induced strengthening and flow arrest at very large accumulated strains (γ∼ 80).

View Article and Find Full Text PDF

We experimentally characterize the microstructure and rheology of a carefully designed mixture of immiscible fluids and near-neutral-wetting colloidal particles. Particle bridging across two fluid interfaces provides a route to highly stable gel-like emulsions at volume fractions of the dispersed phase well below the random close-packing limit for spheres. We investigate the microstructural origins of this behavior by confocal microscopy and reveal a percolating network of colloidal particles that serves as a cohesive scaffold, bridging together droplets of the dispersed phase.

View Article and Find Full Text PDF