Background: Arrhythmias originating from papillary muscles (PAPs) can be challenging when targeted with catheter ablation. The prevalence and impact of structural abnormalities on PAPs in patients with focal PAP arrhythmias is unknown.
Objectives: The purpose of this study was to analyze, in a consecutive patient series with focal PAP arrhythmias, the impact of structural abnormalities detected by multimodality imaging.
Purpose: The purpose of this study was to introduce and evaluate a novel two-dimensional wideband black-blood (BB) LGE sequence, incorporating wideband inversion recovery, wideband T2 preparation, and non-rigid motion correction (MOCO) reconstruction, to improve myocardial scar detection and address artifacts associated with implantable cardioverter defibrillators (ICDs).
Materials And Methods: The wideband MOCO free-breathing BB-LGE sequence was tested on a sheep with ischemic scar and in 22 patients with cardiac disease, including 15 with cardiac implants, at 1.5 T.
Cardiovascular magnetic resonance imaging (MRI) in patients with cardiac implants, such as pacemakers and defibrillators, has gained importance in recent years with the development of modern cardiac implantable electronic devices. The increasing clinical need to perform MRI examinations in patients with cardiac implants has driven the development of new advanced MRI sequences to mitigate image artifacts associated with cardiac implants. More specifically, advances in imaging techniques, such as wideband late gadolinium enhancement imaging, wideband T1 mapping, and wideband perfusion, have been designed to improve image quality and examinations in patients with cardiac implants, enabling a comprehensive and more reliable diagnosis, which was previously unattainable in these patients.
View Article and Find Full Text PDFLeft atrial appendage occlusion devices (LAAO) are a feasible alternative for non-valvular atrial fibrillation (AF) patients at high risk of thromboembolic stroke and contraindication to antithrombotic therapies. However, optimal LAAO device configurations (i.e.
View Article and Find Full Text PDFJ Cardiovasc Electrophysiol
September 2024
Introduction: Scar substrate in nonischemic cardiomyopathy (NICM) patients is often difficult to identify. Advances in cardiac imaging, especially using late iodine-enhanced computed tomography (LIE-CT), allow better characterization of scars giving rise to ventricular tachycardia (VT). Currently, there are limited data on clinical correlates of CT-derived scar substrates in NICM.
View Article and Find Full Text PDFBackground: Myocardial T1-rho (T1ρ) mapping is a promising method for identifying and quantifying myocardial injuries without contrast agents, but its clinical use is hindered by the lack of dedicated analysis tools.
Purpose: To explore the feasibility of clinically integrated artificial intelligence-driven analysis for efficient and automated myocardial T1ρ mapping.
Study Type: Retrospective.
Purpose: Wideband phase-sensitive inversion recovery (PSIR) late gadolinium enhancement (LGE) enables myocardial scar imaging in implantable cardioverter defibrillators (ICD) patients, mitigating hyperintensity artifacts. To address subendocardial scar visibility challenges, a 2D breath-hold single-shot electrocardiography-triggered black-blood (BB) LGE sequence was integrated with wideband imaging, enhancing scar-blood contrast.
Methods: Wideband BB, with increased bandwidth in the inversion pulse (0.
Background And Aims: Patients with repaired tetralogy of Fallot remain at risk of life-threatening ventricular tachycardia related to slow-conducting anatomical isthmuses (SCAIs). Preventive ablation of SCAI identified by invasive electroanatomical mapping is increasingly performed. This study aimed to non-invasively identify SCAI using 3D late gadolinium enhancement cardiac magnetic resonance (3D-LGE-CMR).
View Article and Find Full Text PDFPurpose: Joint bright- and black-blood MRI techniques provide improved scar localization and contrast. Black-blood contrast is obtained after the visual selection of an optimal inversion time (TI) which often results in uncertainties, inter- and intra-observer variability and increased workload. In this work, we propose an artificial intelligence-based algorithm to enable fully automated TI selection and simplify myocardial scar imaging.
View Article and Find Full Text PDFJ Cardiovasc Electrophysiol
June 2024
Atrial fibrillation (AF) is the most common human arrhythmia, forming thrombi mostly in the left atrial appendage (LAA). However, the relation between LAA morphology, blood patterns and clot formation is not yet fully understood. Furthermore, the impact of anatomical structures like the pulmonary veins (PVs) have not been thoroughly studied due to data acquisition difficulties.
View Article and Find Full Text PDFAims: To identify clinical correlates of myocardial T1ρ and to examine how myocardial T1ρ values change under various clinical scenarios.
Methods And Results: A total of 66 patients (26% female, median age 57 years [Q1-Q3, 44-65 years]) with known structural heart disease and 44 controls (50% female, median age 47 years [28-57 years]) underwent cardiac magnetic resonance imaging at 1.5 T, including T1ρ mapping, T2 mapping, native T1 mapping, late gadolinium enhancement, and extracellular volume (ECV) imaging.
Background: Patients with arrhythmias originating from papillary muscles (PAPs) often have pleomorphic ventricular arrhythmias (PVAs) that can result in failed ablations. The mechanism of PVAs is unknown.
Objective: The purpose of this study was to assess the prevalence and mechanisms of PVAs and the impact on outcomes in patients with focal left ventricular PAP ventricular arrhythmias (VAs).
Background At follow-up CT after left atrial appendage occlusion (LAAO), hypoattenuation thickening (HAT) on the atrial aspect of the device is a common finding but the clinical implications require further study. Purpose To assess the association of HAT grade at follow-up CT with clinical characteristics and outcomes in patients who underwent LAAO. Materials and Methods This prospective study included consecutive participants with atrial fibrillation and who were at high risk for stroke (CHADS-VASc score ≥4) who underwent LAAO and were administered pacifier or nonpacifier devices at two French medical centers between January 2012 and November 2020.
View Article and Find Full Text PDFIntroduction: Variants of cardiomyopathy genes in patients with nonischemic cardiomyopathy (NICM) generate various phenotypes of cardiac scar and delayed enhancement cardiac magnetic resonance (DE-CMR) imaging which may impact ventricular tachycardia (VT) management.
Methods: The objective was to compare the findings of cardiomyopathy genetic testing on DE-CMR imaging and long-term outcomes among patients with NICM undergoing VT ablation procedures. Image phenotyping and genotyping were performed in a consecutive series of patients referred for VT ablation and correlated to survival free of VT.
JACC Clin Electrophysiol
October 2023
Background: The impact of filtering on bipolar electrograms (EGMs) has not been systematically examined. We tried to clarify the optimal filter configuration for ventricular tachycardia (VT) ablation.
Methods: Fifteen patients with VT were included.
Aims: Although the mechanism of an atrial tachycardia (AT) can usually be elucidated using modern high-resolution mapping systems, it would be helpful if the AT mechanism and circuit could be predicted before initiating mapping.
Objective: We examined if the information gathered from the cycle length (CL) of the tachycardia can help predict the AT-mechanism and its localization.
Methods: One hundred and thirty-eight activation maps of ATs including eight focal-ATs, 94 macroreentrant-ATs, and 36 localized-ATs in 95 patients were retrospectively reviewed.