Publications by authors named "Hubert Cabana"

The presence of trace organic contaminants (TrOCs), such as pharmaceuticals, personal care products, additives, and polar pesticides in sediments of rivers and lakes highly impacted by anthropogenic activities makes sediments a secondary source of contamination for aquatic ecosystems. Considering this, a method for analyzing 44 TrOCs of diverse nature (including five transformation products, 13 pharmaceuticals, five personal care products, 14 pesticides, and seven additives) was developed and validated. It is based on extraction by pressurized liquid extraction (PLE), followed by purification and pre-concentration by solid phase extraction (SPE) and quantification by liquid chromatography coupled to a triple quadrupole mass spectrometer (LC-QqQMS).

View Article and Find Full Text PDF

Anthropogenic activities and urbanization can lead to the discharge of organic compounds into surface waters. It is important to investigate these relationships further to mitigate contamination better and prioritize protection efforts. This study aimed to verify the effect of specific anthropogenic factors on lake water contamination caused by trace organic contaminants (TrOCs) such as pharmaceuticals, pesticides and consumer product additives.

View Article and Find Full Text PDF

Four new coordination polymers (CPs) have been prepared and evaluated for their efficacy in adsorbing hydrogen sulfide. The reactions of the structurally flexible assembling dithione ligand, , with different silver(I) salts lead to four new metal-organic coordination architectures (CPs , , , and ) exhibiting either one- or two-dimensional networks. CP , 2D-[(AgCl)], exhibits a linear series of rhomboid (S)Ag(μ-Cl)Ag(S) secondary building units (SBUs) where S is one of the thione functions of , altogether forming a 2D-network.

View Article and Find Full Text PDF

Numerous contaminants are produced and used daily, a significant fraction ultimately finding their way into natural waters. However, data on their distribution in lakes is lacking. To address this gap, the presence of 54 trace organic contaminants (TrOCs), representative of various human activities, was investigated in the surface water of 290 lakes across Canada.

View Article and Find Full Text PDF

The bioremediation of pharmaceutical compounds contained in wastewater, in an ecological and sustainable way, is possible via the oxidative action of fungal laccases. The discovery of new fungal laccases with unique physico-chemical characteristics pushes researchers to identify suitable laccases for specific applications. The aim of this study is to purify and characterize laccase isoenzymes produced from the Trametes hirsuta IBB450 strain for the bioremediation of pharmaceutical compounds.

View Article and Find Full Text PDF

This research proposes the preparation of a two-layer laccase biocatalyst using genipin or/and glutaraldehyde as cross-linking agents. The multilayer biocatalysts were prepared using different combinations of genipin and glutaraldehyde in the individual preparation of the first and second laccase layers. First, chitosan was treated with genipin or glutaraldehyde, followed by the immobilization of the first laccase layer to form a single-layer biocatalyst.

View Article and Find Full Text PDF

This work investigated non-polar solvent hexane and polar solvents methanol and ethanol as inducers besides a well-known inducer, copper, for laccase production with and without mesoporous silica-covered plastic packing under sterilised and unsterilised conditions. The potential of waste-hexane water, which is generated during the mesoporous silica production process, was also investigated as a laccase inducer. During the study, the free and immobilised laccase activity on the packing was measured.

View Article and Find Full Text PDF

This study focuses on using Casuarina equisetifolia biomass for pilot-scale glucose oxidase production from Aspergillus niger and its application in the removal of trace organic contaminants (TrOCs) from municipal wastewater through the bio-Fenton oxidation. The cost of glucose oxidase was 0.005 $/U, including the optimum production parameters, 10% biomass, 7% sucrose, 1% peptone, and 3% CaCO at 96 h with an enzyme activity of 670 U/mL.

View Article and Find Full Text PDF

Due to stringent regulatory norms, waste processing faces confrontations and challenges in adapting technology for effective management through a convenient and economical system. At the global level, attempts are underway to achieve a green and sustainable treatment for the valorization of lignocellulosic biomass as well as organic contaminants in wastewater. Enzymatic treatment in the environmental aspect thrived on being the promising rapid strategy that appeased the aforementioned predicament.

View Article and Find Full Text PDF

The potential of microorganisms for the treatment of municipal biosolids is continuously growing. The present studies evaluated the potency of for the reduction in biosolid mass, production of extracellular enzymes, and removal of pharmaceutical compounds (PhACs) in biosolid slurry in the presence and absence of spiked PhACs [5 non-steroidal anti-inflammatories (NSAIs) and 2 psychoactive compounds (PACs)]. Toxicity after 35 days of fungal treatment was also assessed.

View Article and Find Full Text PDF

This research work aims to valorize lignocellulosic biorefinery sludge with genetically engineered Trichoderma atroviride for simultaneous removal of organic contaminants, fermentation inhibitors, and lignocellulolytic enzyme cocktail production. Upon analysis, three phenolic compounds (42.6 ± 3.

View Article and Find Full Text PDF

In this study, was grown on municipal biosolids (BS) as the substrate to produce laccase for the removal of pesticides (fungicides, herbicides, and insecticides) from wastewater. Among the various types of BS tested, sterilized biosolids were the most promising substrate for laccase production by with a maximal laccase activity (162.1 ± 21.

View Article and Find Full Text PDF

Remediation of persistent polycyclic aromatic hydrocarbons (PAHs) contaminated soil has become a major challenge in recent years. Further, conventional application of bioaugmentation strategies for PAHs remediation require continuous supply of microbial specific nutrients, which makes these processes less feasible. Hence, the present study focused on PAHs remediation using surfactants along with wood assisted fungal system in a microcosm set up.

View Article and Find Full Text PDF

The novelty of this study deals with the biocatalytic treatment of trace organic contaminants (TrOCs) from municipal wastewater by insolubilized laccase. Laccase from Trametes versicolor was aggregated by three-phase partitioning technique followed by cross-linking with glutaraldehyde to produce insolubilized laccase as cross-linked enzyme aggregates (CLEAs). The optimal conditions for CLEAs preparation include ammonium sulphate concentration of 83% (w/v), crude to t-butanol ratio of 1.

View Article and Find Full Text PDF

Τhe ligninolytic enzyme laccase has proved its potential for environmental applications. However, there is no documented industrial application of free laccase due to low stability, poor reusability, and high costs. Immobilization has been considered as a powerful technique to enhance laccase's industrial potential.

View Article and Find Full Text PDF

The current study aimed in enhancing the efficiency of alkaline treatment for CECs remediation in biosolids through the application of RSM and ANN. Due to the seasonal variation of CECs in biosolids, a complete CECs profile over a period of three years were performed. Out of 64 targeted CECs, 13 PhACs (70.

View Article and Find Full Text PDF

Hydrogen sulfide (HS) is one of the main contaminants found in biogas, which is one of the end products of the anaerobic biodegradation of proteins and other sulfur-containing compounds in solid waste. The presence of HS is one of the factors limiting the valorization of biogas. To valorize biogas, HS must be removed.

View Article and Find Full Text PDF

Unconventional oils such as diluted bitumen from oil sands differs from most of conventional oils in terms of physiochemical properties and PAHs composition. This raises concerns regarding the effectiveness of current remediation strategies and protocols originally developed for conventional oil. Here we evaluated the efficiency of different biotreatment approaches, such as fungi inoculation (bioaugmentation), sludge addition (bioaugmentation/biostimulation), perennial grasses plantation (phytoremediation) and their combinations as well as natural attenuation (as control condition), for the remediation of soil contaminated by synthetic crude oil (a product of diluted bitumen) in laboratory microcosms.

View Article and Find Full Text PDF

Despite all its advantages and potential, cross-linking enzyme aggregate (CLEA) technology is still not applied at an industrial scale for enzyme insolubilization for bioremediation purposes. In this study, the enzyme polymer engineered structure (EPES) method was used to enhance CLEA stability and reuse. A crude laccase from Trametes hirsuta was successfully insolubilized to form EPES-CLEAs.

View Article and Find Full Text PDF

Polyaromatic phenanthrene (Phe) and benzo[a]pyrene (BaP) are highly toxic, mutagenic, and carcinogenic contaminants widely dispersed in nature, including saline environments. Polyextremotolerant Rhodotorula mucilaginosa EXF-1630, isolated from Arctic sea ice, was grown on a huge concentration range -10 to 500 ppm- of Phe and BaP as sole carbon sources at hypersaline conditions (1 M NaCl). Selected polycyclic aromatic hydrocarbons (PAHs) supported growth as well as glucose, even at high PAH concentrations.

View Article and Find Full Text PDF

The present work pronounces the three phase partitioning (TPP)-facilitated preparation of porous cross-linked Candida antarctica lipase B (CaLB) aggregates (pCLEAs) for 5-Hydroxymethylfurfural (HMF) esters synthesis. CLEAs and pCLEAs of CaLB were prepared with eupergit as the support under the optimized conditions of pH 8.0, eupergit/protein ratio of 3.

View Article and Find Full Text PDF

Trace organic contaminants (TrOCs) in biosolids is creating potential threats for reuse of biosolids. Out of the tested 64 trace organic contaminants, seven pharmaceutically active compounds (PhACs), and three pesticides were detected in biosolids from a municipal wastewater treatment plant. This study encompasses the removal of TrOCs and improvement in the aerobic digestion of biosolids by various pretreatments including utilization of indigenous microbes present in biosolids (T1), the effect of an enzymatic pretreatment (T2), biostimulation by the addition of an external carbon source (T3) and the synergic effect of biostimulation and enzymatic pretreatment (T4).

View Article and Find Full Text PDF

In the present study, amino-functionalised mesoporous silica microspheres were utilised as support for the covalent immobilisation of lipase B (CaLB) for the subsequent production of 2,5-furandicarboxylic acid (FDCA) from 2,5-diformylfuran (DFF). Under the optimised operating conditions of pH 6.5, particle/enzyme ratio of 1.

View Article and Find Full Text PDF

The current work focuses on the production of glucose oxidase (GOD) in sterilized biosolid (BS) slurries containing BS and municipal wastewater effluent. Various parameters were optimized for maximizing the GOD production and the effects of biostimulation on GOD production was investigated by adding synthetic media components. The studies on inoculum characteristics at an inoculum age of 72 h and inoculum size of 20% (w/v) produced high GOD activities of around 6012 U/L in 25% (dw/v) BS media.

View Article and Find Full Text PDF

In the present study, a Bio-Fenton oxidation approach for the removal of trichloroethylene (TCE) was developed through the optimization of enzyme-based hydrogen peroxide (HO) production from glucose. Glucose oxidase (GOD) was evaluated for the production of HO and the optimized parameters were found to be the oxidation of 60 mM glucose by 1 mg mL of GOD which yielded a conversion of 88.4% of glucose for subsequent utilization in the Bio-Fenton process.

View Article and Find Full Text PDF