The war in Ukraine and its consequences are becoming a disaster not only on a national scale but also for many other countries. The overview and considerations on such consequences given in this article shall help in managing and restoring (Ukrainian) territories after war. A structured analysis of literature about the war and post-war impact on the environment paired with 'grey literature' and the collection of currently available information from regional and national government agencies and official organizations on the specific situation in Ukraine, with a particular focus on waste management issues, was conducted.
View Article and Find Full Text PDFThis study examines methane (CH) emission factors from biogas and wastewater treatment plants, based on primary and secondary data collected from 109 facilities. Primary emission data were measured at 19 facilities representing prevalent plant configurations across Europe. Statistical analysis highlights two categorical variables, namely primary feedstock and plant size, expressed as CH production (≤250 kgh: small and medium-sized plants, >250 kgh: large plants), each of which has a significant impact on whole-site CH emissions.
View Article and Find Full Text PDFTransition to circular economy for lithium-ion batteries used in electric vehicles requires integrating multiple stages of the value cycle. However, strategies aimed at extending the lifetime of batteries are not yet sufficiently considered within the European battery industry, particularly regarding repurposing. Using second-life lithium-ion batteries (SLBs) before subsequent recycling can offer several advantages, such as the development of sustainable business models, the reduction of emissions, and alignment with UN Sustainable Development Goals 7, 12, and 13.
View Article and Find Full Text PDFDue to its intense use of resources, the construction sector was identified as a priority sector in the European Green Deal. Construction and demolition waste (CDW) is one of the largest waste streams of the European Union. As it shows a high potential for recycling, the European Commission set a recovery target of 70% under the Waste Framework Directive.
View Article and Find Full Text PDFThe quantity and type of macro- and microplastics was investigated in rotting material during the composting process of two state-of-the-art composting plants in Austria. Microplastics >0.2 mm, were found already after the first turning event in both facilities.
View Article and Find Full Text PDFBiogas and biomethane production can play an important role in a fossil-fuel-free energy supply, provided that process-related methane (CH) losses are minimized. Addressing the lack of representative emission data, this study aims to provide component specific CH emission factors (EFs) for various biogas plant technologies, enabling more accurate emission estimates for the biogas sector and supporting the identification of low emission technologies. Four measurement teams investigated 33 biogas plants in Austria, Germany, Sweden and Switzerland including mainly agricultural and biowaste treating facilities.
View Article and Find Full Text PDFThe goal of this study is a qualitative and quantitative evaluation of processes and flows within the solid waste management (WM) system in Kutaisi, Georgia, and the wider Imereti region. The applied methodology based upon data collected through customized questionnaires enabled both the formal and informal sectors (IS) to be characterized. Moreover, waste composition studies in the region's rural and semi-urban areas revealed that the share of recyclables is higher in urban areas and commercial centres.
View Article and Find Full Text PDFInvestigations of the behavior and effects of engineered nanoparticles (ENPs) on human health and the environment need detailed knowledge of their fate and transport in environmental compartments. Such studies are highly challenging due to low environmental concentrations, varying size distribution of the particles and the interference with the natural background. A strategy to overcome these limits is to use mimics of ENPs with unique detectable properties that match the properties of the ENPs as nanotracers.
View Article and Find Full Text PDFThe paper discusses how the choice of software and hardware components used in unmanned aerial systems (UAS) affects the accuracy of estimating volume on landfills and dumpsites, and the amount of ground work needed to create a high-altitude justification of reference geodetic network. A non-specialized low-cost unmanned aerial vehicle (UAV) and a specialized UAV of a geodetic class were compared in scenarios with different numbers of ground control points. In addition, the use of desktop and cloud software for photogrammetric data-processing was assessed.
View Article and Find Full Text PDFThe paper discusses the experience of using unmanned aerial vehicles (UAV) in the management of municipal solid waste landfills and dumpsites. Although the use of drones at waste disposal sites (WDS) has a more than ten-year history, the active application of these technologies has increased in the last 3-4 years. The paper analyzes scientific publications of 2010-2021 (July) and identifies the main WDS management task groups for which the solution of UAV can be used.
View Article and Find Full Text PDFThe emissions of tyre wear particles (TWPs) into the environment are increasing and have negative impacts on the environment and human health. The aim of this study was therefore to establish a mass balance for vehicle tyres und TWP emissions in Austria using static material flow analysis, which enabled a quantification of mass flows of rubber including carbon black as the most mass-relevant tyre filler. Vehicle-specific and mileage-dependent emission factors were used to calculate the TWP emissions.
View Article and Find Full Text PDFDespite the fact that nanomaterials have been in use for decades and chemicals legislation is largely harmonised within the EU, quantitative and safety-relevant information on nanomaterials is still scarce. In particular, information about production volumes, their unique physicochemical properties (size, specific surface area, etc.) and nanomaterial exposure, which may lead to adverse effects on human health and the environment, is still lacking.
View Article and Find Full Text PDFSemiconductor quantum dots (QDs) are nanocrystals used in diverse optoelectronics. At the end of their useful life they are likely to end up in landfills, where they could be mobilzed by infiltrating rain water. In this work, spectroscopic and light scattering techniques were employed to investigate the environmental fate of QDs exposed to leachates from Austrian landfill sites containing municipal solid and bulky wastes.
View Article and Find Full Text PDFWaste electrical and electronic equipment (WEEE) can contain brominated flame retardants (BFRs) that pose a threat to human health and the environment. In addition, Br-containing plastics reduce the recycling potential of WEEE. In order to gain a better insight into the distribution of Br in plastics from WEEE, the total concentration of Br was measured on the level of device types and plastic components using handheld X-ray fluorescence (hXRF).
View Article and Find Full Text PDFSignificant knowledge and data gaps associated with the fate of product-embedded engineered nanomaterials (ENMs) in waste management processes exist that limit our current ability to develop appropriate end-of-life management strategies. This review paper was developed as part of the activities of the IWWG ENMs in Waste Task Group. The specific objectives of this review paper are to assess the current knowledge associated with the fate of ENMs in commonly used waste management processes, including key processes and mechanisms associated with ENM fate and transport in each waste management process, and to use that information to identify the data gaps and research needs in this area.
View Article and Find Full Text PDFTo date construction materials that contain engineered nanomaterials (ENMs) are available at the markets, but at the same time very little is known about their environmental fate. Therefore, this study aimed at modeling the potential fate of ENMs by using the example of the Japanese construction sector and by conducting a dynamic material flow analysis. Expert interviews and national reports revealed that about 3920-4660 tons of ENMs are annually used for construction materials in Japan.
View Article and Find Full Text PDFBy converting anaerobic landfills into a biologically stabilized state through accelerating aerobic organic matter degradation, the effort and duration necessary for post-closure procedures can be shortened. In Austria, the first full-scale application of in-situ landfill aeration by means of low pressure air injection with simultaneous off-gas collection and treatment was implemented on an old MSW-landfill and operated between 2007 and 2013. Besides complementary laboratory investigations, which included waste sampling from the landfill site prior to aeration start, a comprehensive field monitoring program was conducted to assess the influence of the aeration measure on the emission behavior of the landfilled waste during the aeration period as well as after aeration completion.
View Article and Find Full Text PDFThe number of products containing engineered nanomaterials (ENMs) has increased due to their high industrial relevance as well as their use in diverse consumer products. At the end of their life cycle ENMs might be released to the environment and therefore concerns arise regarding their environmental impact. In order to track their fate upon disposal, it is crucial to establish methods to trace ENMs in complex environmental samples and to differentiate them from naturally-occurring nanoparticles.
View Article and Find Full Text PDFControlling and monitoring of emissions from municipal solid waste (MSW) landfills is important to reduce environmental damage and health risks. Therefore, simple and meaningful monitoring tools are required. This paper presents how Fourier Transform Infrared (FT-IR) Spectroscopy can be used to monitor leachate from various landfill sites.
View Article and Find Full Text PDFEngineered nanomaterials (ENMs) are already extensively used in diverse consumer products. Along the life cycle of a nano-enabled product, ENMs can be released and subsequently accumulate in the environment. Material flow models also indicate that a variety of ENMs may accumulate in waste streams.
View Article and Find Full Text PDFBioresour Technol
September 2015
A micrometeorological method, combining an inverse dispersion technique with path-integrated concentration measurements, was applied on an Austrian biogas plant over the period of more than one year to determine emissions of the whole plant. Measurement campaigns were conducted to characterize the emission response to operational activities (e.g.
View Article and Find Full Text PDFAn inverse dispersion technique in conjunction with Open-Path Tunable-Diode-Laser-Spectroscopy (OP-TDLS) and meteorological measurements was applied to characterise methane (CH4) emissions from an Austrian open-windrow composting plant treating source-separated biowaste. Within the measurement campaigns from July to September 2012 different operating conditions (e.g.
View Article and Find Full Text PDFOpen digestate storage tanks were identified as one of the main methane (CH4) emitters of a biogas plant. The main purpose of this paper is to determine these emission rates using an inverse dispersion technique in conjunction with open-path tunable diode laser spectroscopy (OP-TDLS) concentration measurements for multisource reconstruction. Since the condition number, a measure of "ill-conditioned" matrices, strongly influences the accuracy of source reconstruction, it is used as a diagnostic of error sensitivity.
View Article and Find Full Text PDF