Siamese tracking has witnessed tremendous progress in tracking paradigm. However, its default box estimation pipeline still faces a crucial inconsistency issue, namely, the bounding box decided by its classification score is not always best overlapped with the ground truth, thus harming performance. To this end, we explore a novel simple tracking paradigm based on the intersection over union (IoU) value prediction.
View Article and Find Full Text PDFMuch progress has been made in siamese tracking, primarily benefiting from increasing huge training data. However, very little attention has been really paid to the role of huge training data in learning an effective siamese tracker. In this study, we undertake an in-depth analysis of this issue from a novel optimization perspective, and observe that training data is particularly adept at background suppression, thereby refining target representation.
View Article and Find Full Text PDF