Background: Computed tomography (CT) plays an essential role in classifying stroke, quantifying penumbra size and supporting stroke-relevant radiomics studies. However, it is difficult to acquire standard, accurate and repeatable images during follow-up. Therefore, we invented an intelligent CT to evaluate stroke during the entire follow-up.
View Article and Find Full Text PDFBackground: Interstitial lung disease requires frequent re-examination, which directly causes excessive cumulative radiation exposure. To date, AI has not been applied to CT for enhancing clinical care; thus, we hypothesize AI may empower CT with intelligence to realize automatic and accurate pulmonary scanning, thus dramatically decrease medical radiation exposure without compromising patient care.
Methods: Facial boundary detection was realized by recognizing adjacent jaw position through training and testing a region proposal network (RPN) on 76,882 human faces using a preinstalled 2-dimensional camera; the lung-fields was then segmented by V-Net on another training set with 314 subjects and calculated the moving distance of the scanning couch based on a pre-generated calibration table.