Publications by authors named "Huayang Dai"

The application of high-throughput phenotyping (HTP) techniques based on unmanned aerial vehicle (UAV) remote-sensing platforms to study large-scale population breeding opens the way to more efficient acquisition of dynamic phenotypic traits and provides new tools that should help close the gap between genotyping and traditional field-phenotyping methods. Toward this end we used a field UAV-HTP platform to deploy a RGB high-resolution camera to acquire time-series images. By using three-dimensional reconstructed point cloud models, we developed a repeatable processing workflow to extract plant height from time-series images.

View Article and Find Full Text PDF

Background: With environmental deterioration, natural resource scarcity, and rapid population growth, mankind is facing severe global food security problems. To meet future needs, it is necessary to accelerate progress in breeding for new varieties with high yield and strong resistance. However, the traditional phenotypic screening methods have some disadvantages, such as destructive, inefficient, low-dimensional, labor-intensive and cumbersome, which seriously hinder the development of field breeding.

View Article and Find Full Text PDF

Background: Above-ground biomass (AGB) is a basic agronomic parameter for field investigation and is frequently used to indicate crop growth status, the effects of agricultural management practices, and the ability to sequester carbon above and below ground. The conventional way to obtain AGB is to use destructive sampling methods that require manual harvesting of crops, weighing, and recording, which makes large-area, long-term measurements challenging and time consuming. However, with the diversity of platforms and sensors and the improvements in spatial and spectral resolution, remote sensing is now regarded as the best technical means for monitoring and estimating AGB over large areas.

View Article and Find Full Text PDF