Publications by authors named "Huaxin Lei"

Elucidating biodegradation mechanisms and predicting pollutant reactivities are essential for advancing the application of biodegradation engineering to address the challenge of thousands of emerging contaminants. Molecular biology and computational chemistry are powerful tools for this purpose, enabling the investigation of biochemical reactions at both the gene and atomic levels. This study employs the biodegradation of ten sulfonamide antibiotics as a case study to demonstrate the integration of genomics and quantum chemistry approaches in exploring the biodegradation behavior of emerging contaminants.

View Article and Find Full Text PDF

Wastewater biotreatment systems harbor a rich diversity of microorganisms, and the effectiveness of biotreatment systems largely depends on the activity of these microorganisms. Specifically, viruses play a crucial role in altering microbial behavior and metabolic processes throughout their infection phases, an aspect that has recently attracted considerable interest. Two metagenomic approaches, viral-like particle-concentrated (VPC, representing free viral-like particles) and non-concentrated (NC, representing the cellular fraction), were employed to assess their efficacy in revealing virome characteristics, including taxonomy, diversity, host interactions, lifestyle, dynamics, and functional genes across processing units of three wastewater treatment plants (WWTPs).

View Article and Find Full Text PDF

Rifampicin (RIF) resistance imposes a challenge on the antimicrobial treatment of pathogen infections. Figuring out the development mechanism of RIF resistance is critical to improving antimicrobial therapy strategy in clinics and biological treatment strategy of RIF polluted sewage in environmental engineering. The RIF resistance development of Staphylococcus aureus (S.

View Article and Find Full Text PDF

Background: As a widely used broad-spectrum antibiotic, chloramphenicol is prone to be released into environments, thus resulting in the disturbance of ecosystem stability as well as the emergence of antibiotic resistance genes. Microbes play a vital role in the decomposition of chloramphenicol in the environment, and the biotransformation processes are especially dependent on synergistic interactions and metabolite exchanges among microbes. Herein, the comprehensive chloramphenicol biotransformation pathway, key metabolic enzymes, and interspecies interactions in an activated sludge-enriched consortium were elucidated using integrated multi-omics and cultivation-based approaches.

View Article and Find Full Text PDF

The aerobic, lincomycin-degrading bacterial strain Conexibacter sp. LD01, belonging to the phylum Actinobacteria, was isolated from activated sludge. Both second- and third-generation sequencing technologies were applied to uncover the genomic characterization and high-quality genome with 99.

View Article and Find Full Text PDF

Biological treatment is an efficient and economical process to remove thiamphenicol (TAP) residues from the environment. The discovery of TAP-degrading bacteria and the decryption of its biodegradation mechanism will be beneficial to enhance the biological removal of TAP. In this study, Sphingomonas sp.

View Article and Find Full Text PDF

Figuring out the comprehensive metabolic mechanism of chloramphenicol (CAP) is critical to improving CAP removal in the bioremediation process. In this study, CAP biodegradation by six consortia and isolated Sphingomonas sp. CL5.

View Article and Find Full Text PDF