DNA damage repair is a crucial cellular mechanism for rectifying DNA lesions arising during growth and development. Among the various repair pathways, postreplication repair (PRR) plays a pivotal role in resolving single-stranded gaps induced by DNA damage. However, the contribution of PRR to virulence remains elusive in the fungal pathogen .
View Article and Find Full Text PDFThe DNA damage response is a highly conserved protective mechanism that enables cells to cope with various lesions in the genome. Extensive studies across different eukaryotic cells have identified the crucial roles played by components required for response to DNA damage. When compared to the essential signal transducers and repair factors in the DNA damage response circuitry, the negative regulators and underlying mechanisms of this circuitry have been relatively under-examined.
View Article and Find Full Text PDFDNA damage checkpoints are essential for coordinating cell cycle arrest and gene transcription during DNA damage response. Exploring the targets of checkpoint kinases in and other fungi has expanded our comprehension of the downstream pathways involved in DNA damage response. While the function of checkpoint kinases, specifically Rad53, is well documented in the fungal pathogen , their targets remain poorly understood.
View Article and Find Full Text PDFObjective: Central-type Non-small Cell Lung Cancer (NSCLC) treatment involves different surgical techniques, including Video-Assisted Thoracoscopic Surgery (VATS) and Open Thoracotomy Sleeve Lobectomy. However, there remains a lack of consensus on the most effective treatment modality.
Methods: This study strictly adhered to PRISMA guidelines.