Publications by authors named "Huaxiang Shi"

Acute hypobaric hypoxia (AHH) exposure causes altitude mountain sickness (AMS) and life-threatening high altitude cerebral edema (HACE). Despite decades of research, the role of cerebral blood flow (CBF) changes in the pathophysiology of severe AMS remains unclear. The current study evaluated spatiotemporal responses of CBF associated with HACE in mice during the early stages of ascent to high altitudes.

View Article and Find Full Text PDF

Dysfunction of striatal dopaminergic circuits has been implicated in motor impairment and Parkinson's disease (PD)-related circadian perturbations that may represent an early prodromal marker of PD. Cyclin-dependent kinase 5 (CDK5) negatively regulates dopamine signaling in the striatum, suggesting a critical role of CDK5 in circadian and sleep disorders. Here, we used clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing to produce mice with a dorsal striatum (DS)-specific knockdown (KD) of the Cdk5 gene (referred to as DS-CDK5-KD mice) and investigate its role in vivo.

View Article and Find Full Text PDF

Bombesin (BN) is an itch-specific mediator that causes intense itch-scratching activity in mammals. Although most examinations of BN-induced itch processing have focused on the spinal cord, the involvement of central nervous system mechanisms remains unclear. Here, we investigated how relationships among hypothalamic regions regulate BN-mediated itch-scratch processes.

View Article and Find Full Text PDF

The aim of this study was to investigate the harmful effects of acute hypoxia on mouse cerebral cortex and hippocampus and the underlying mechanism. Mouse model of acute hypoxia was constructed by using a sealed glass jar. Laser speckle contrast imaging was used to detect the changes of cerebral blood flow after different time duration of hypoxia.

View Article and Find Full Text PDF

Cyclin-dependent kinase 5 (Cdk5) is a regulator of axon growth and radial neuronal migration in the developing mouse brain, and it plays critical roles in cortical structure formation and brain function. However, the function of Cdk5 in cortico-cortical and cortico-sensorimotor networks in the adult remains largely unknown. In this study, we investigated the function of Cdk5 in the rostral secondary motor cortex (M2) in the male mouse using CRISPR/Cas9 gene editing and somatic brain transgenesis, to produce M2-specific knockdown of Cdk5 in neurons in the male mouse.

View Article and Find Full Text PDF