Publications by authors named "Huaxia Cui"

Increasing NAD+ levels by supplementing with the precursor nicotinamide mononucleotide (NMN) improves cardiac function in multiple mouse models of disease. While NMN influences several aspects of mitochondrial metabolism, the molecular mechanisms by which increased NAD+ enhances cardiac function are poorly understood. A putative mechanism of NAD+ therapeutic action exists via activation of the mitochondrial NAD+-dependent protein deacetylase sirtuin 3 (SIRT3).

View Article and Find Full Text PDF

Context: Brain-derived neurotrophic factor (BDNF) haploinsufficiency is associated with hyperphagia and obesity in both animals and humans. BDNF appears to function downstream of the leptin-melanocortin signaling pathway to control energy balance. The potential role of BDNF in the etiology of the severe hyperphagia associated with PWS has not been previously explored.

View Article and Find Full Text PDF

HOXB13 is a member of the homeodomain family of sequence-specific transcription factors and, together with the androgen receptor (AR), plays a critical role in the normal development of the prostate gland. We demonstrate here that, in prostate cancer cells, HOXB13 is a key determinant of the response to androgens. Specifically, it was determined that HOXB13 interacts with the DNA-binding domain of AR and inhibits the transcription of genes that contain an androgen-response element (ARE).

View Article and Find Full Text PDF

The impact of ligand binding on nuclear receptor (NR) structure and the ability of target cells to distinguish between different receptor-ligand complexes are key determinants of the pharmacological activity of NR ligands. However, until relatively recently, these mechanistic insights have not been used in a prospective manner to develop screens for NR modulators with specific therapeutic activities. Driven by the need for unique androgen receptor (AR) antagonists that retain activity in hormone-refractory prostate cancer, we developed and applied a conformation-based screen to identify AR antagonists that were mechanistically distinct from existing drugs of this class.

View Article and Find Full Text PDF

The pharmacological activity of different nuclear receptor ligands is reflected by their impact on receptor structure. Thus, we asked whether differential presentation of protein-protein interaction surfaces on the androgen receptor (AR), a surrogate assay of receptor conformation, could be used in a prospective manner to define the pharmacological activity of bound ligands. To this end, we identified over 150 proteins/polypeptides whose ability to interact with AR is influenced in a differential manner by ligand binding.

View Article and Find Full Text PDF