Programmed cell death protein 1 (PD-1) and its ligand PD-L1 blockade have been identified to target immune checkpoints to treat human cancers with durable clinical benefit. Several studies reveal that the response to PD-1-PD-L1 blockade might correlate with PD-L1 expression levels in tumor cells. However, the mechanistic pathways that regulate PD-L1 protein expression are not understood.
View Article and Find Full Text PDFOver half a million US residents are suffering with bladder cancer (BC), which costs a total $4 billion in treatment annually. Although recent studies report that autophagy-related gene 7 (ATG7) is overexpressed in BCs, the regulatory effects of ATG7 on cancer stem-like phenotypes and invasion have not been explored yet. Current studies demonstrated that the deficiency of ATG7 by its shRNA dramatically reduced sphere formation and invasion in vitro, as well as lung metastasis in vivo in human invasive BC cells.
View Article and Find Full Text PDFBladder cancer (BC) ranks as the sixth most common cancer in the United States and is the leading cause of death in patients with urinary malignancies. p63 is a member of the p53 family and is believed to function as a tumor suppressor in human BCs. Our most recent studies revealed a previously unknown function of the RING of XIAP in promoting microRNA 4295 (miR-4295) transcription, thereby reducing p63α protein translation and enhancing normal urothelial transformation, whereas p63α upregulates hsp70 transcription, subsequently activating the HSP70/Wasf3/Wave3/matrix metalloproteinase 9 (MMP-9) axis and promoting BC cell invasion via initiating the transcription factor E2F1.
View Article and Find Full Text PDFAlthough several previous studies have reported the implication of various microRNAs (miRNAs) in regulation of human bladder cancer (BC) development, alterations and function of many miRNAs in bladder cancer growth are not explored yet at present. Here, we screened 1,900 known miRNAs and first discovered that miR-411 was one of the major miRNAs, which was down-regulated in n-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN)-induced BCs. This miR-411 down-regulation was also observed in human BC tissues and cell lines.
View Article and Find Full Text PDF