Electrophoretic displays (EPDs) based on photonic crystals show great potential due to their reduced eye fatigue and low power consumption. However, the current image quality and service life of this system still face great challenges. In this work, we fabricated a new kind of electrically responsive photonic crystal (ERPC) device based on PSMA@SiO liquid colloidal crystals (LCCs) for EPDs.
View Article and Find Full Text PDFCounterfeiting is a worldwide issue and has long troubled legitimate businesses, while nowadays anti-counterfeiting materials and technology are still insufficient to combat the escalating counterfeit behaviors. Inspired by hindwing structure of Troides magellanus, a new kind of anti-counterfeiting material taking advantage of both physical and chemical structures to display multiple optical states is prepared. The chemical units (luminescent lanthanide) are blended with physical units (monodispersed colloidal particles) and mediating molecules, which are then assembled into a photonic crystal structure at room temperature in less than 10 s through a new assembly technique called molecule-mediated shear-induced assembly technique (MSAT).
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2022
In this study, we fabricate a new kind of ultrasensitive humidity-responsive photonic crystal (HPC) films based on emulsion polymerization and the open mill and bending-induced ordering technique (OM-BIOT) method, which is simple and scalable. The HPC film senses relative humidity (RH) from 9 to 98% for the polymer matrix swells up in high RH and shrinks in low RH, leading to a large reflectance shift (81 nm) and distinct color change. Based on the double-peak reflective spectra of the HPC film, we confirm the gradient swelling hypothesis and find that the thickness is another important factor for controlling the sensitivity and response rate of the HPC film.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2022
Photochromic materials are widely investigated due to their vivid color transformation for many real applications. In this work, a new kind of multiangle photochromic photonic crystal (PC) material with high robustness and long durability for smart phone decoration and anticounterfeiting features is fabricated. After thermal mixing of spiropyran powder and monodisperse core-interlayer-shell (CIS) particles, a large-area and high-quality photochromic PC film has been prepared by the self-designed bending-induced ordering technique (BIOT).
View Article and Find Full Text PDFHypothesis: Polymer photonic crystals have drawn a lot of interest due to cost-effective fabrication. Although tremendous efforts are tried, almost no large-size photonic crystal (PC) films can be obtained due to different kinds of reasons. The main issues are the tedious process and strict preparation conditions (like high temperature and solvents), sometimes the limitation of the machinery equipment, accordingly they are not conducive to preparation of subsequent large-scale PC films.
View Article and Find Full Text PDF