Hepatic fibrosis progresses concomitantly with a variety of biomechanical alternations, especially increased liver stiffness. These biomechanical alterations have long been considered as pathological consequences. Recently, growing evidence proposes that these alternations result in the fibrotic biomechanical microenvironment, which drives the activation of hepatic stellate cells (HSCs).
View Article and Find Full Text PDFCurrent diabetic retinopathy (DR) treatment involves blood glucose regulation combined with laser photocoagulation or intravitreal injection of vascular endothelial growth factor (VEGF) antibodies. However, due to the complex pathogenesis and cross-interference of multiple biochemical pathways, these interventions cannot block disease progression. Recognizing the critical role of the retinal microenvironment (RME) in DR, it is hypothesized that reshaping the RME by simultaneously inhibiting primary and secondary blood-retinal barrier (BRB) injury can attenuate DR.
View Article and Find Full Text PDFNutrient or energy deprivation, especially glucose restriction, is a promising anticancer therapeutic approach. However, establishing a precise and potent deprivation strategy remains a formidable task. The Golgi morphology is crucial in maintaining the function of transport proteins (such as GLUT1) driving glycolysis.
View Article and Find Full Text PDFLiver fibrosis is a reversible pathological process caused by chronic liver damage and a major risk factor for hepatocellular carcinoma (HCC). Hepatic stellate cell (HSC) activation is considered the main target for liver fibrosis therapy. However, the efficiency of this strategy is limited due to the complex microenvironment of liver fibrosis, including excessive extracellular matrix (ECM) deposition and hypoxia-induced imbalanced ECM metabolism.
View Article and Find Full Text PDFFerroptosis (FPT), a novel form of programmed cell death, is characterized by overwhelming iron/reactive oxygen species (ROS)-dependent accumulation of lipid peroxidation (LPO). However, the insufficiency of endogenous iron and ROS level limited the FPT therapeutic efficacy to a large extent. To overcome this obstacle, the bromodomain-containing protein 4 (BRD)-inhibitor (+)-JQ1 (JQ1) and iron-supplement ferric ammonium citrate (FAC)-loaded gold nanorods (GNRs) are encapsulated into the zeolitic imidazolate framework-8 (ZIF-8) to form matchbox-like GNRs@JF/ZIF-8 for the amplified FPT therapy.
View Article and Find Full Text PDFIntestinal milieu disorders are strongly related to the occurrence of inflammatory bowel diseases (IBDs), which results from mucosa destruction, epithelium disruption, and tight junction (TJ) proteins loss. Excess of H S in the intestinal milieu produced by the sulfate-reducing bacteria metabolism contributes to development of IBDs via epithelial barrier breakdown. Conventional interventions, such as surgery and anti-inflammatory medications, are considered not completely effective because of frequent recurrence and other complications.
View Article and Find Full Text PDFRheumatoid arthritis (RA) is a chronic arthropathy causing cartilage destruction, bone erosion, and even disability. Although some advances in RA treatment have been made based on inflammatory cytokine inhibition, long-term treatment and drug effect have been restrained by severe side effects. Herein, we developed a resveratrol (RSV)-loaded Ag/AgS triangular-shaped homologous heterostructure with polyethylene glycol/folic acid (PEG/FA) modification (Ag/AgS-PEG-FA/RSV NTs) to simultaneously suppress inflammatory cytokine over-expression through photocatalytic HS scavenging and macrophage polarization stimulation.
View Article and Find Full Text PDFA palladium(II)-catalyzed enantioselective arylation of unbiased secondary C(sp)-H bonds was developed. The enantioselectivity was controlled by the combination of a pyridyl or isoquinolinyl directing group and an amino acid, -Boc-2-pentyl proline. A variety of 2-propyl azaaryls and biaryl iodides were employed to provide arylated products in moderate to good yields (up to 82%) with high enantioselectivities (up to 93:7 er).
View Article and Find Full Text PDFHepatic fibrosis, characterized by excessive reactive oxygen species (ROS) generation, hepatic stellate cells (HSCs) activation, and enormous extracellular matrix (ECM) production, can further cause liver cirrhosis, liver failure and liver cancer. However, the combination of limited solubility, low targeting, uncontrolled release and the sophisticated physiological barriers are tremendous challenges for therapeutic effect. In this study, we engineered a sequential delivery strategy based on autophagy inhibitor carvedilol (CAR) loaded and hyaluronic acid (HA) modified star-like Au nanozyme (Au NS@CAR-HA) for targeted HSCs suppression.
View Article and Find Full Text PDF