Alginate-based materials present promising potential for emergency hemostasis due to their excellent properties, such as procoagulant capability, biocompatibility, low immunogenicity, and cost-effectiveness. However, the inherent deficiencies in water solubility and mechanical strength pose a threat to hemostatic efficiency. Here, we innovatively developed a macromolecular cross-linked alginate aerogel based on norbornene- and thiol-functionalized alginates through a combined thiol-ene cross-linking/freeze-drying process.
View Article and Find Full Text PDFAntibacterial hydrogel has emerged as an excellent candidate for wound dressing with the ability to eliminate infection and promote wound healing. Herein, a dynamic hydrogel is developed by Schiff base reaction of mixed charged polypeptides and oxidized dextran (ODex). Specifically, biodegradable polypeptides of 1-(propylthio)acetic acid-3-butylimidazole-modified poly(L-lysine) (PLL-PBIM) and adipate dihydrazide-modified poly(L-glutamic acid) (PLG-ADH) are achieved with tunable substitution and charge.
View Article and Find Full Text PDFExcessive scar formation has adverse physiological and psychological effects on patients; therefore, a therapeutic strategy for rapid wound healing and reduced scar formation is urgently needed. Herein, bilayered thiolated alginate/PEG diacrylate (BSSPD) hydrogels were fabricated for sequential release of small extracellular vesicles (sEVs), which acted in different wound healing phases, to achieve rapid and scarless wound healing. The sEVs secreted by bone marrow derived mesenchymal stem cells (B-sEVs) were released from the lower layer of the hydrogels to promote angiogenesis and collagen deposition by accelerating fibroblast and endothelial cell proliferation and migration during the early inflammation and proliferation phases, while sEVs secreted by miR-29b-3p-enriched bone marrow derived mesenchymal stem cells were released from the upper layer of the hydrogels and suppressed excessive capillary proliferation and collagen deposition during the late proliferation and maturation phases.
View Article and Find Full Text PDF