Publications by authors named "Huanle Luo"

Background: Despite vaccination, SARS-CoV-2 evolution leads to breakthrough infections and reinfections worldwide. Knowledge of hybrid immunization is crucial for future broad-spectrum SARS-CoV-2 vaccines.

Methods: In this study, we investigated neutralizing antibodies (nAbs) against the SARS-CoV-2 ancestral virus (wild-type [WT]), pre-Omicron VOCs, Omicron subvariants, and SARS-CoV-1 using plasma collected from four distinct cohorts: individuals who received three doses of BBIBP-CorV/CoronaVac vaccines, those who experienced BA.

View Article and Find Full Text PDF
Article Synopsis
  • c-FLIP is an important protein involved in processes like cell death (apoptosis) and inflammation, but its full effects on gene expression are not well understood.
  • This study compared gene expression profiles in normal and c-FLIP deficient mice during Zika virus (ZIKV) infection, finding significant changes related to immune responses and organ development.
  • The research suggests that c-FLIP plays a role in both the body's initial (innate) and adaptive immune responses during viral infections and may contribute to developmental issues caused by ZIKV.
View Article and Find Full Text PDF

Interferon-induced transmembrane proteins (IFITMs) are upregulated by interferons. They are not only highly conserved in evolution but also structurally consistent and have almost identical structural domains and functional domains. They are all transmembrane proteins and have multiple heritable variations in genes.

View Article and Find Full Text PDF

The annual co-circulation of two influenza A subtypes, H1N1 and H3N2, viruses in humans poses significant public health threats worldwide. However, the continuous antigenic drift and shift of influenza viruses limited the effectiveness of current seasonal influenza vaccines, necessitating the development of new vaccines against both seasonal and pandemic viruses. One potential solution to this challenge is to improve inactivated vaccines by including multiple T-cell epitopes.

View Article and Find Full Text PDF
Article Synopsis
  • TRAF6 plays a key role in the immune response to flavivirus infections, but its specific relationship with the Zika virus (ZIKV) is not well understood.
  • Research has shown that ZIKV infection lowers TRAF6 levels in human trophoblast cells and that this reduction occurs at both the mRNA and protein levels in various cell models and mice.
  • The study found that ZIKV causes TRAF6 degradation through P62, with the viral protein NS1 being a major factor, indicating that targeting the interaction between NS1 and TRAF6 could be a potential strategy for treating ZIKV infections.*
View Article and Find Full Text PDF

Background: Influenza viruses pose a persistent threat to global public health, necessitating the development of innovative and broadly effective vaccines.

Methods: This study focuses on a multiepitope vaccine (MEV) designed to provide broad-spectrum protection against different influenza viruses. The MEV, containing 19 B-cell linear epitopes, 7 CD4 T cells, and 11 CD8 T cells epitopes identified through enzyme-linked immunospot assay (ELISPOT) in influenza viruses infected mice, was administered through a regimen of two doses of DNA vaccine followed by one dose of a protein vaccine in C57BL/6 female mice.

View Article and Find Full Text PDF

c-FLIP functions as a dual regulator of apoptosis and inflammation, yet its implications in Zika virus (ZIKV) infection remain partially understood, especially in the context of ZIKV-induced congenital Zika syndrome (CZS) where both apoptosis and inflammation play pivotal roles. Our findings demonstrate that c-FLIP promotes ZIKV infection in placental cells and myeloid-derived macrophages, involving inflammation and caspase-8/3-mediated apoptosis. Moreover, our observations reveal that c-FLIP augments ZIKV infection in multiple tissues, including blood cell, spleen, uterus, testis, and the brain of mice.

View Article and Find Full Text PDF

Unlabelled: Companion animals such as cats and dogs harbor diverse microbial communities that can potentially impact human health due to close and frequent contact. To better characterize their total infectomes and assess zoonotic risks, we characterized the overall infectomes of companion animals (cats and dogs) and evaluated their potential zoonotic risks. Meta-transcriptomic analyses were performed on 239 samples from cats and dogs collected across China, identifying 24 viral species, 270 bacterial genera, and two fungal genera.

View Article and Find Full Text PDF

Influenza remains a global health concern due to its potential to cause pandemics as a result of rapidly mutating influenza virus strains. Existing vaccines often struggle to keep up with these rapidly mutating flu viruses. Therefore, the development of a broad-spectrum peptide vaccine that can stimulate an optimal antibody response has emerged as an innovative approach to addressing the influenza threat.

View Article and Find Full Text PDF

The development of a universal influenza vaccine to elicit broad immune responses is essential in reducing disease burden and pandemic impact. In this study, the mosaic vaccine design strategy and genetic algorithms were utilized to optimize the seasonal influenza A virus (H1N1, H3N2) hemagglutinin (HA) and neuraminidase (NA) antigens, which also contain most potential T-cell epitopes. These mosaic immunogens were then expressed as virus-like particles (VLPs) using the baculovirus expression system.

View Article and Find Full Text PDF

Background: Pre-existing cross-reactive immunity among different coronaviruses, also termed immune imprinting, may have a comprehensive impact on subsequent SARS-CoV-2 infection and COVID-19 vaccination effectiveness. Here, we aim to explore the interplay between pre-existing seasonal coronaviruses (sCoVs) antibodies and the humoral immunity induced by COVID-19 vaccination.

Methods: We first collected serum samples from healthy donors prior to COVID-19 pandemic and individuals who had received COVID-19 vaccination post-pandemic in China, and the levels of IgG antibodies against sCoVs and SARS-CoV-2 were detected by ELISA.

View Article and Find Full Text PDF
Article Synopsis
  • A genetic change called rs12252-C influences how a protein, called IFITM3, works and is linked to severe flu in Chinese people.
  • Scientists created special mice to study this change and found that these mice had stronger immune responses after getting a flu vaccine compared to normal mice.
  • The study showed that the change helps the IFITM3 protein to stay in a better position in cells, which helps immune cells work better and fight off the flu.
View Article and Find Full Text PDF
Article Synopsis
  • Bats are hosts to various zoonotic viruses, but little is known about virus diversity and co-infection rates within individual bats, particularly studied in Yunnan, China.* -
  • An analysis of 149 bats revealed high levels of virus co-infection and spillover, suggesting that these interactions may enhance virus evolution and emergence.* -
  • The study identified five viral species likely pathogenic to humans or livestock, including a novel recombinant SARS-like coronavirus that poses a significant risk due to its ability to bind the human ACE2 receptor.*
View Article and Find Full Text PDF

The mechanism by which Zika virus (ZIKV) causes severe birth defects in pregnant women remains unclear. Cell tropisms in placenta and brain play a crucial role in ZIKV pathogenesis, leading to congenital Zika syndrome (CZS). To identify the host factors involved in ZIKV infection, we compared the transcriptional profiles of ZIKV-infected human first-trimester placental trophoblast cells HTR8/SVneo and a human glioblastoma astrocytoma cell line U251.

View Article and Find Full Text PDF

The re-emergence of Zika virus (ZIKV) remains a major public health threat that has raised worldwide attention. Accumulating evidence suggests that ZIKV can cause serious pathological changes to the human nervous system, including microcephaly in newborns. Recent studies suggest that metformin, an established treatment for diabetes may play a role in viral infection; however, little is known about the interactions between ZIKV infection and metformin administration.

View Article and Find Full Text PDF

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is ongoing and multiple studies have elucidated its pathogenesis, however, the related- microbiome imbalance caused by SARS-CoV-2 is still not clear. In this study, we have comprehensively compared the microbiome composition and associated function alterations in the oropharyngeal swabs of healthy controls and coronavirus disease 2019 (COVID-19) patients with moderate or severe symptoms by metatranscriptomic sequencing. We did observe a reduced microbiome alpha-diversity but significant enrichment of opportunistic microorganisms in patients with COVID-19 compared with healthy controls, and the microbial homeostasis was rebuilt following the recovery of COVID-19 patients.

View Article and Find Full Text PDF

Whether the immune imprinting caused by severe acute respiratory syndrome coronavirus (SARS-CoV) affects the efficiency of SARS-CoV-2 vaccination has attracted global concern. Little is known about the dynamic changes of antibody response in SARS convalescents inoculated with three doses of inactivated SARS-CoV-2 vaccine although lack of cross-neutralizing antibody response to SARS-CoV-2 in SARS survivors has been reported. We longitudinally examined the neutralizing antibodies (nAbs) against SARS-CoV and SARS-CoV-2 as well as spikes binding IgA, IgG, IgM, IgG1, and IgG3 antibodies in 9 SARS-recovered donors and 21 SARS-naïve donors.

View Article and Find Full Text PDF

Bats are reservoir hosts for many zoonotic viruses. Despite this, relatively little is known about the diversity and abundance of viruses within bats at the level of individual animals, and hence the frequency of virus co-infection and inter-species transmission. Using an unbiased meta-transcriptomics approach we characterised the mammalian associated viruses present in 149 individual bats sampled from Yunnan province, China.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes asymptomatic or mild symptoms, even rare hospitalization in children. A major concern is whether the pre-existing antibodies induced by low pathogenic human coronaviruses (LPH-CoVs) in children can cross-react with SARS-CoV-2. To address this unresolved question, we analyzed the pre-existing spike (S)-specific immunoglobin (Ig) G antibodies against LPH-CoVs and the cross-reactive antibodies against SARS-CoV-2 in 658 serum samples collected from children prior to SARS-CoV-2 outbreak.

View Article and Find Full Text PDF

West Nile virus (WNV), a mosquito-borne neurotropic flavivirus, has become the leading cause of vector-borne viral encephalitis in the United States for the past decades. The murine model of WNV infection is an effective in vivo experimental model to investigate WNV neuropathogenesis in humans. Here, we describe several laboratory protocols to study WNV infection and the virus-induced inflammation in the brain in both in vitro and in vivo murine models.

View Article and Find Full Text PDF

Zinc ion as an enzyme cofactor exhibits antiviral and anti-inflammatory activity during infection, but circulating zinc ion level during Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection is unclear. This study aimed to evaluate serum zinc ion level in Coronavirus Disease 2019 (COVID-19) patients and healthy subjects, as well as its correlation with antibodies against SARS-CoV-2. 114 COVID-19 patients and 48 healthy subjects (38 healthy volunteers and 10 close contacts of patients with COVID-19) were included.

View Article and Find Full Text PDF

Despite many studies on the immune characteristics of Coronavirus disease 2019 (COVID-19) patients in the progression stage, a detailed understanding of pertinent immune cells in recovered patients is lacking. We performed single-cell RNA sequencing on samples from recovered COVID-19 patients and healthy controls. We created a comprehensive immune landscape with more than 260,000 peripheral blood mononuclear cells (PBMCs) from 41 samples by integrating our dataset with previously reported datasets, which included samples collected between 27 and 47 days after symptom onset.

View Article and Find Full Text PDF

A recent mutation analysis suggested that Non-Structural Protein 6 (NSP6) of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a key determinant of the viral pathogenicity. Here, by transcriptome analysis, we demonstrated that the inflammasome-related NOD-like receptor signaling was activated in SARS-CoV-2-infected lung epithelial cells and Coronavirus Disease 2019 (COVID-19) patients' lung tissues. The induction of inflammasomes/pyroptosis in patients with severe COVID-19 was confirmed by serological markers.

View Article and Find Full Text PDF

B cell response plays a critical role against SARS-CoV-2 infection. However, little is known about the diversity and frequency of the paired SARS-CoV-2 antigen-specific BCR repertoire after SARS-CoV-2 infection. Here, we performed single-cell RNA sequencing and VDJ sequencing using the memory and plasma B cells isolated from five convalescent COVID-19 patients, and analyzed the spectrum and transcriptional heterogeneity of antibody immune responses.

View Article and Find Full Text PDF