Publications by authors named "Huani Wang"

Par6α encoded by PARD6A is a member of the PAR6 family and is reported to promote cancer initiation and progression. PARD6A is frequently upregulated in different types of cancers, but its regulatory role in lung cancer progression is yet to be established. In this study, we analyzed the PARD6A expression in biopsies from lung adenocarcinoma (LUAD) patients, and the survival probability using LUAD tissue microarray (TMA) and online datasets from TCGA and GEO.

View Article and Find Full Text PDF

Development of colorectal cancer (CRC) accompanied with genomic instability. Genomic instability was promoted by microRNAs (miRNAs) inhibiting key genes in DNA damage repair and spindle assembly processes. Whether miR-653-3p affects genomic instability is unknown.

View Article and Find Full Text PDF

Colorectal cancer (CRC) continues to represent one of the major causes of cancer-related mortality and morbidity. MicroRNAs (miRNAs) are confirmed to be involved in modulating substential biological processes by affecting the expression of targeted genes, including carcinogenesis. In the present study, the expression pattern and functional roles of microRNA-15a-5p (miR-15a-5p) in CRC cells were investigated.

View Article and Find Full Text PDF

Given that exosomes mediate intercellular communication by delivering cellular components to recipient cells or tissue, they have the potential to be engineered to deliver therapeutic payloads. However, the regulatory mechanism of exosome secretion is poorly understood. In addition, mitochondrial components have been found in exosomes, suggesting communication between mitochondria and exosomes.

View Article and Find Full Text PDF

Understanding the mechanisms of colorectal cancer (CRC) progression is critical for developing innovative treatment strategies. As an endoplasmic reticulum-located protein, B cell receptor-associated protein 31 (BCAP31) has been identified to be highly expressed in multiple cancers. However, its function and molecular mechanism in CRC remain not fully understood.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) play a crucial role in cancer progression due to their capability to modulate the expression of various target genes. However, given the heterogeneity of tumor cells, miRNAs have been confirmed to exert different regulatory effects. Here, bioinformatic analysis results indicated that expression of miR-330-5p is decreased in colorectal cancer (CRC) tissues and inversely correlated with SND1 expression.

View Article and Find Full Text PDF

Inflammatory activation and intestinal flora imbalance play an essential role in the development and progression of colorectal cancer (CRC). Berberine (BBR) has attracted great attention in recent years due to its heath-related benefits in inflammatory disorders and tumors, but the intricate mechanisms have not been fully elucidated. In this study, the effects and the mechanism of BBR on colon cancer were investigated in an azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced colitis-associated carcinogenesis mice model.

View Article and Find Full Text PDF