Manganese dioxide (MnO2) cathodes are widely studied for aqueous zinc-ion batteries (AZIBs) because of their high theoretical capacity and energy density. However, the formation of "dead manganese" and Mn2+ dissolution during cycling lead to active materials loss and significant capacity decay, impeding their practical application. In this study, a novel oxygen-containing group-functionalized carbon nanotube supporter loaded with Bi2O3 (cCNTs-Bi) was constructed to improve the cyclic stability of MnO2 cathodes.
View Article and Find Full Text PDFBiochar-based fertilizers can improve the mineralization of carbon and nitrogen in soil and enhance the soil micro-ecological environment due to particular physical and chemical properties. It is of great significance to explore the underlying mechanism of biochar-based fertilizer in the regulation of soil microorganisms and soil enzyme activity to improve soil quality. Field experiments were conducted to investigate the effects of different biochar-based fertilizer rates[0 (CK2), 0.
View Article and Find Full Text PDF