Publications by authors named "Huangyuan Zha"

Oxygen is essential for aerobic organisms, but little is known about its role in antiviral immunity. Here, we report that during responses to viral infection, hypoxic conditions repress antiviral-responsive genes independently of HIF signaling. EGLN1 is identified as a key mediator of the oxygen enhancement of antiviral innate immune responses.

View Article and Find Full Text PDF

To effectively protect the host from viral infection while avoiding excessive immunopathology, the innate immune response must be tightly controlled. However, the precise regulation of antiviral innate immunity and the underlying mechanisms remain unclear. Here, we find that sirtuin3 (SIRT3) interacts with mitochondrial antiviral signaling protein (MAVS) to catalyze MAVS deacetylation at lysine residue 7 (K7), which promotes MAVS aggregation, as well as TANK-binding kinase I and IRF3 phosphorylation, resulting in increased MAVS activation and enhanced type I interferon signaling.

View Article and Find Full Text PDF

Retinoic acid-inducible-I (RIG-I), melanoma differentiation-associated gene 5 (MDA5), and cyclic GMP-AMP synthase (cGAS) genes encode essential cytosolic receptors mediating antiviral immunity against viruses. Here, we show that OTUD3 has opposing role in response to RNA and DNA virus infection by removing distinct types of RIG-I/MDA5 and cGAS polyubiquitination. OTUD3 binds to RIG-I and MDA5 and removes K63-linked ubiquitination.

View Article and Find Full Text PDF

Egg-laying defective nine 1 (EGLN1) functions as an oxygen sensor to catalyze prolyl hydroxylation of the transcription factor hypoxia-inducible factor-1 α under normoxia conditions, leading to its proteasomal degradation. Thus, EGLN1 plays a central role in the hypoxia-inducible factor-mediated hypoxia signaling pathway; however, the posttranslational modifications that control EGLN1 function remain largely unknown. Here, we identified that a lysine monomethylase, SET7, catalyzes EGLN1 methylation on lysine 297, resulting in the repression of EGLN1 activity in catalyzing prolyl hydroxylation of hypoxia-inducible factor-1 α.

View Article and Find Full Text PDF

p53 is a classic tumor suppressor that functions in maintaining genome stability by inducing either cell arrest for damage repair or cell apoptosis to eliminate damaged cells in response to different types of stress. Posttranslational modifications (PTMs) of p53 are thought to be the most effective way for modulating of p53 activation. Here, we show that SIRT5 interacts with p53 and suppresses its transcriptional activity.

View Article and Find Full Text PDF

Accurate control of innate immune responses is required to eliminate invading pathogens and simultaneously avoid autoinflammation and autoimmune diseases. Here, we demonstrate that arginine monomethylation precisely regulates the mitochondrial antiviral-signaling protein (MAVS)-mediated antiviral response. Protein arginine methyltransferase 7 (PRMT7) forms aggregates to catalyze MAVS monomethylation at arginine residue 52 (R52), attenuating its binding to TRIM31 and RIG-I, which leads to the suppression of MAVS aggregation and subsequent activation.

View Article and Find Full Text PDF

Arginine methylation catalyzed by protein arginine methyltransferases (PRMT) is a common post-translational modification in histone and nonhistone proteins, which regulates many cellular functions. Protein arginine methyltransferase 3 (prmt3), a type I arginine methyltransferase, has been shown to carry out the formation of stable monomethylarginine as an intermediate before the establishment of asymmetric dimethylarginine. To date, however, the role of PRMT3 in antiviral innate immunity has not been elucidated.

View Article and Find Full Text PDF

RLR-mediated type I IFN production plays a pivotal role in innate antiviral immune responses, where the signaling adaptor MAVS is a critical determinant. Here, we show that MAVS is a physiological substrate of SIRT5. Moreover, MAVS is succinylated upon viral challenge, and SIRT5 catalyzes desuccinylation of MAVS.

View Article and Find Full Text PDF

The essential role of pathogens in host metabolism is widely recognized, yet the mechanisms by which they affect host physiology remain to be fully defined. Here, we found that NleB, an enteropathogenic Escherichia coli (EPEC) type III secretion system effector known to possess N-acetylglucosamine (GlcNAc) transferase activity, GlcNAcylates HIF-1α, a master regulator of cellular O2 homeostasis. We determined that NleB-mediated GlcNAcylation at a conserved arginine 18 (Arg18) at the N-terminus of HIF-1α enhanced HIF-1α transcriptional activity, thereby inducing HIF-1α downstream gene expression to alter host glucose metabolism.

View Article and Find Full Text PDF