Current therapeutic strategies for autoimmune diseases such as multiple sclerosis (MS) are directed towards nonspecific immunosuppression, which has severe side effects. The induction of antigen-specific tolerance has become an ideal therapy for autoimmune diseases. In this study, we have constructed a dual peptide nanoparticle platform, including the antigen peptide of the primary signal and inhibitory peptide of the co-stimulatory signal, for T-cell activation and to trigger antigen-specific immune tolerance to treat experimental autoimmune encephalomyelitis (EAE), a murine model for MS.
View Article and Find Full Text PDFDendritic cell-based immunotherapy, in which the antigen is effectively delivered to dendritic cells and then the dendritic cells stimulated by the antigen migrate to draining lymph nodes (DLNs) to induce the CD8 T-cell immune response, shows great promise for tumor immunotherapy. In this study, we used coassembled nanoparticles formed by Trp2 antigen and the conjugates of short-chain poly(ethylene glycol) (PEG) and pyropheophorbide-A (PPa) (Trp2/PPa-PEGm) to deliver Trp2 to DCs. Intrinsically self-chelating Cu of coassemblies could be used to sensitively image the migration of DCs by positron emission tomography (PET) imaging.
View Article and Find Full Text PDFRheumatoid Arthritis (RA) is a chronic autoimmune disease, which mainly causes inflammation of the synovial joints and destruction of cartilage and bone tissue. At present, a variety of clinical drugs have been applied in the treatment of rheumatoid arthritis. With the development of nanotechnology, more and more nano-drugs have been applied in the treatment of rheumatoid arthritis due to the unique physical and chemical properties of nanomaterials.
View Article and Find Full Text PDFTraditional photodynamic therapy (PDT) requires external light excitation to produce reactive oxygen species (ROSs) for the treatment of tumors. Due to problems of light penetration, traditional PDT is limited by the location and depth of the tumor. In this study, we rationally designed and constructed a novel strategy to amplify the therapeutic effect of PDT.
View Article and Find Full Text PDFCurcumin grafted hyaluronic acid modified pullulan polymers (Cur-HA-SPu) by chemical conjugation was designed and prepared, and its film may be used to accelerate wound healing and help to fight infection. The synthesis of Cur-HA-SPu polymer was characterized by FT-IR, H NMR and DSC. Cur-HA-SPu film has a higher swelling ratio than that of HA-SPu film.
View Article and Find Full Text PDFThe nonantibacterial and low strength properties of sodium alginate films negatively impact their application for food packaging. In order to improve these properties, a novel chitosan-benzalkonium chloride (C-BC) complex was prepared by ionic gelation using tripolyphosphate (TPP) as a coagulant, and a biocomposite obtained through the adsorption of C-BC complex on microfibrillated cellulose, MFC/C-BC, was then incorporated into a sodium alginate film. The TEM image showed that the C-BC nanoparticles were spherical in shape with a diameter of about 30 nm, and the adsorption equilibrium time of these nanoparticles on the surface of MFC was estimated to be 6 min under the driving forces of hydrogen bonds and electrostatic interactions.
View Article and Find Full Text PDF