IEEE Trans Neural Syst Rehabil Eng
March 2022
Instrumented footwear represents a promising technology for spatiotemporal gait analysis in out-of-the-lab conditions. However, moderate accuracy impacts this technology's ability to capture subtle, but clinically meaningful, changes in gait patterns that may indicate adverse outcomes or underlying neurological conditions. This limitation hampers the use of instrumented footwear to aid functional assessments and clinical decision making.
View Article and Find Full Text PDFBiofeedback systems have been extensively used in walking exercises for gait improvement. Past research has focused on modulating the wearer's cadence, gait variability, or symmetry, but none of the previous works has addressed the problem of inducing a desired walking speed in the wearer. In this paper, we present a new, minimally obtrusive wearable biofeedback system (WBS) that uses closed-loop vibrotactile control to elicit desired changes in the wearer's walking speed, based on the predicted user response to anticipatory and delayed feedback.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
January 2020
Wearable sensors have been proposed as alternatives to traditional laboratory equipment for low-cost and portable real-time gait analysis in unconstrained environments. However, the moderate accuracy of these systems currently limits their widespread use. In this paper, we show that support vector regression (SVR) models can be used to extract accurate estimates of fundamental gait parameters (i.
View Article and Find Full Text PDFIEEE Int Conf Rehabil Robot
June 2019
The trend toward soft wearable robotic systems creates a compelling need for new and reliable sensor systems that do not require a rigid mounting frame. Despite the growing use of inertial measurement units (IMUs) in motion tracking applications, sensor drift and IMU-to-segment misalignment still represent major problems in applications requiring high accuracy. This paper proposes a novel 2-step calibration method which takes advantage of the periodic nature of human locomotion to improve the accuracy of wearable inertial sensors in measuring lower-limb joint angles.
View Article and Find Full Text PDF