Front Cardiovasc Med
March 2024
Cardiomyopathy, a heterogeneous pathological condition characterized by changes in cardiac structure or function, represents a significant risk factor for the prevalence and mortality of cardiovascular disease (CVD). Research conducted over the years has led to the modification of definition and classification of cardiomyopathy. Herein, we reviewed seven of the most common types of cardiomyopathies, including Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC), diabetic cardiomyopathy, Dilated Cardiomyopathy (DCM), desmin-associated cardiomyopathy, Hypertrophic Cardiomyopathy (HCM), Ischemic Cardiomyopathy (ICM), and obesity cardiomyopathy, focusing on their definitions, epidemiology, and influencing factors.
View Article and Find Full Text PDFDiabetic cardiomyopathy (DCM) is associated with a greater risk of mortality in patients with diabetes mellitus. Currently, no specific treatment has been suggested for DCM treatment. This study demonstrated that myricetin (M) attenuated DCM-associated cardiac injury in mice subjected to streptozotocin (SZT) and in neonatal rat cardiomyocytes (NRCM) challenged with high glucose.
View Article and Find Full Text PDFApigenin is an important component of fruits and vegetables in human daily diets. Several cellular and animal models have been performed to demonstrate its anti-oxidant and anti-inflammatory bioactivities. However, the cardioprotective effects of apigenin in diabetic cardiomyopathy (DCM) remain unclear.
View Article and Find Full Text PDFPeroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors involved in the regulation of lipid metabolism, energy production, and inflammation. It is well established that all of the three isoforms of PPARs expressed in the cardiomyocytes, and that PPARs are closely involved in the regulation of lipid metabolism and energy homeostasis as well as many other different aspects in the heart. We think that PPARs are very important therapeutic targets for drug development, however, the drugs targeting at PPARs meet some trouble in clinical practice, especially the reported side effects related to heart failure.
View Article and Find Full Text PDFPeroxisome proliferator-activated receptor-γ (PPARγ) is a ligand-activated transcription factor belonging to the nuclear receptor superfamily, which plays a central role in regulating lipid and glucose metabolism. However, accumulating evidence demonstrates that PPARγ agonists have potential to reduce inflammation, influence the balance of immune cells, suppress oxidative stress, and improve endothelial function, which are all involved in the cellular and molecular mechanisms of cardiac fibrosis. Thus, in this review we discuss the role of PPARγ in various cardiovascular conditions associated with cardiac fibrosis, including diabetes mellitus, hypertension, myocardial infarction, heart failure, ischemia/reperfusion injury, atrial fibrillation, and several other cardiovascular disease (CVD) conditions, and summarize the developmental status of PPARγ agonists for the clinical management of CVD.
View Article and Find Full Text PDFThe objective of this study was to evaluate the electrophysiologic characteristics of Crista terminalis (CT) and their implication in the pathogenesis of atrial tachycardia in rabbits. For this purpose, 27 New Zealand rabbits were used. Using standard glass microelectrode technique, cellular action potentials (APs) of CT and pectinate muscle (PM) were recorded in normal Tyrode's perfusion and Tyrode's perfusion with 4 μM isoproterenol.
View Article and Find Full Text PDF